MATH 311-504 Topics in Applied Mathematics Lecture 2-7: Basis and coordinates.

Isomorphism

Definition. A linear mapping $f: V_1 \rightarrow V_2$ is called an **isomorphism** of vector spaces if it is both one-to-one and onto.

Two vector spaces V_1 and V_2 are called **isomorphic** if there exists an isomorphism $f : V_1 \rightarrow V_2$.

The word "isomorphism" applies when two complex structures can be mapped onto each other, in such a way that to each part of one structure there is a corresponding part in the other structure, where "corresponding" means that the two parts play similar roles in their respective structures.

Examples of isomorphisms

•
$$\mathcal{M}_{2,2}(\mathbb{R})$$
 is isomorphic to \mathbb{R}^4 .
Isomorphism: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a, b, c, d)$.

• $\mathcal{M}_{2,3}(\mathbb{R})$ is isomorphic to $\mathcal{M}_{3,2}(\mathbb{R})$. Isomorphism: $\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \mapsto \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix}$.

• The plane z = 0 in \mathbb{R}^3 is isomorphic to \mathbb{R}^2 . Isomorphism: $(x, y, 0) \mapsto (x, y)$.

• \mathcal{P}_n is isomorphic to \mathbb{R}^{n+1} . Isomorphism: $a_0+a_1x+\cdots+a_nx^n\mapsto (a_0,a_1,\ldots,a_n)$. Classification problems of linear algebra

Problem 1 Given vector spaces V_1 and V_2 , determine whether they are isomorphic or not.

Problem 2 Given a vector space *V*, determine whether *V* is isomorphic to \mathbb{R}^n for some $n \ge 1$.

Problem 3 Show that vector spaces \mathbb{R}^n and \mathbb{R}^m are not isomorphic if $m \neq n$.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \in V$ are called **linearly dependent** if they satisfy a relation

 $r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0},$

where the coefficients $r_1, \ldots, r_k \in \mathbb{R}$ are not all equal to zero. Otherwise the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are called **linearly independent**. That is, if

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0} \implies r_1=\cdots=r_k=\mathbf{0}.$$

An infinite set $S \subset V$ is **linearly dependent** if there are some linearly dependent vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \in S$. Otherwise *S* is **linearly independent**. **Theorem** Vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V$ are linearly dependent if and only if one of them is a linear combination of the other k - 1 vectors.

Examples of linear independence:

- Vectors $\mathbf{e}_1 = (1, 0, 0, ..., 0)$, $\mathbf{e}_2 = (0, 1, 0, ..., 0)$,..., $\mathbf{e}_n = (0, 0, ..., 0, 1)$ in \mathbb{R}^n . • Matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
 - Polynomials $1, x, x^2, \ldots, x^n, \ldots$

Problem. Show that functions x, e^x , and e^{-x} are linearly independent in $C(\mathbb{R})$.

Suppose that $ax + be^x + ce^{-x} = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0. Divide both sides of the identity by e^x :

$$axe^{-x} + b + ce^{-2x} = 0.$$

The left-hand side approaches b as $x \to +\infty$. $\implies b = 0$

Now $ax + ce^{-x} = 0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x:

$$a+cx^{-1}e^{-x}=0.$$

The left-hand side approaches *a* as $x \to +\infty$. $\implies a = 0$ Now $ce^{-x} = 0 \implies c = 0$. **Theorem 1** Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be distinct real numbers. Then the functions $e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_k x}$ are linearly independent.

Theorem 2 The set of functions $\{x^m e^{\lambda x} \mid \lambda \in \mathbb{R}, m = 0, 1, 2, ...\}$

is linearly independent.

Spanning sets and linear dependence

Let $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k$ be vectors from a vector space V. **Proposition** If \mathbf{v}_0 is a linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ then $\operatorname{Span}(\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k) = \operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$.

Indeed, if
$$\mathbf{v}_0 = r_1 \mathbf{v}_1 + \cdots + r_k \mathbf{v}_k$$
, then
 $t_0 \mathbf{v}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k =$
 $= (t_0 r_1 + t_1) \mathbf{v}_1 + \cdots + (t_0 r_k + t_k) \mathbf{v}_k.$

Corollary Any spanning set for a vector space is minimal if and only if it is linearly independent.

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a **basis**.

Suppose that a set $S \subset V$ is a basis for V.

"Spanning set" means that any vector $\mathbf{v} \in V$ can be represented as a linear combination

$$\mathbf{v}=r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k,$$

where $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \ldots, r_k \in \mathbb{R}$. "Linearly independent" implies that the above representation is unique:

$$\mathbf{v} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 + \dots + r_k \mathbf{v}_k = r'_1 \mathbf{v}_1 + r'_2 \mathbf{v}_2 + \dots + r'_k \mathbf{v}_k$$

$$\implies (r_1 - r'_1) \mathbf{v}_1 + (r_2 - r'_2) \mathbf{v}_2 + \dots + (r_k - r'_k) \mathbf{v}_k = \mathbf{0}$$

$$\implies r_1 - r'_1 = r_2 - r'_2 = \dots = r_n - r'_n = 0$$

Examples. • Standard basis for \mathbb{R}^n : $\mathbf{e}_1 = (1, 0, 0, \dots, 0, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0, 0), \dots,$ $\mathbf{e}_n = (0, 0, 0, \dots, 0, 1).$ Indeed, $(x_1, x_2, ..., x_n) = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \cdots + x_n \mathbf{e}_n$. • Matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ form a basis for $\mathcal{M}_{2,2}(\mathbb{R})$. $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$ • Polynomials $1, x, x^2, \dots, x^n$ form a basis for

 $\mathcal{P}_n = \{a_0 + a_1x + \cdots + a_nx^n : a_i \in \mathbb{R}\}.$

• The infinite set $\{1, x, x^2, \dots, x^n, \dots\}$ is a basis for \mathcal{P} , the space of all polynomials.

Problem Let $\mathbf{v}_1 = (2,5)$ and $\mathbf{v}_2 = (1,3)$. Show that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for \mathbb{R}^2 .

Linear independence is obvious: \mathbf{v}_1 and \mathbf{v}_2 are not parallel. To show spanning, it is enough to represent vectors $\mathbf{e}_1 = (1,0)$ and $\mathbf{e}_2 = (0,1)$ as linear combinations of \mathbf{v}_1 and \mathbf{v}_2 .

$$\mathbf{e}_{1} = r_{1}\mathbf{v}_{1} + r_{2}\mathbf{v}_{2} \iff \begin{cases} 2r_{1} + r_{2} = 1\\ 5r_{1} + 3r_{2} = 0 \end{cases} \iff \begin{cases} r_{1} = 3\\ r_{2} = -5 \end{cases}$$
$$\mathbf{e}_{2} = r_{1}\mathbf{v}_{1} + r_{2}\mathbf{v}_{2} \iff \begin{cases} 2r_{1} + r_{2} = 0\\ 5r_{1} + 3r_{2} = 1 \end{cases} \iff \begin{cases} r_{1} = -1\\ r_{2} = 2 \end{cases}$$

Thus $\mathbf{e}_1 = 3\mathbf{v}_1 - 5\mathbf{v}_2$ and $\mathbf{e}_2 = -\mathbf{v}_1 + 2\mathbf{v}_2$. Then $(x, y) = x\mathbf{e}_1 + y\mathbf{e}_2 = x(3\mathbf{v}_1 - 5\mathbf{v}_2) + y(-\mathbf{v}_1 + 2\mathbf{v}_2)$ $= (3x - y)\mathbf{v}_1 + (-5x + 2y)\mathbf{v}_2$. Let W be the set of all solutions of the ODE y''(x) - y(x) = 0. W is a subspace of the vector space $C^{\infty}(\mathbb{R})$ since it is the null-space of the linear operator $L: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \ L(f) = f'' - f$.

W contains functions e^x , e^{-x} , hyperbolic sine $\sinh x = \frac{1}{2}(e^x - e^{-x})$, and hyperbolic cosine $\cosh x = \frac{1}{2}(e^x + e^{-x})$.

We have that
$$(\sinh x)' = \cosh x$$
,
 $(\cosh x)' = \sinh x$, $\cosh^2 x - \sinh^2 x = 1$.

Proposition $\{e^x, e^{-x}\}$ and $\{\cosh x, \sinh x\}$ are two bases for W.

Proposition $\{e^x, e^{-x}\}$ and $\{\cosh x, \sinh x\}$ are two bases for W.

Proof: "Linear independence": e^x and e^{-x} are linearly independent as shown earlier.

Further, $\cosh 0 = 1$, $\sinh 0 = 0$, $\cosh' 0 = 0$, $\sinh' 0 = 1$. It follows that $\cosh x$ and $\sinh x$ are not scalar multiples of each other.

"Spanning": Take any function $f \in W$. Consider a function $g(x) = a \cosh x + b \sinh x$, where a = f(0), b = f'(0). We have g(0) = a, g'(0) = b.

The initial value problem y'' - y = 0, y(0) = a, y'(0) = b has a unique solution. Therefore f = g.

Thus
$$f(x) = a \cosh x + b \sinh x$$

= $\frac{a}{2}(e^x + e^{-x}) + \frac{b}{2}(e^x - e^{-x}) = \frac{1}{2}(a+b)e^x + \frac{1}{2}(a-b)e^{-x}$.

Basis and coordinates

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$\mathbf{v}=x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots+x_n\mathbf{v}_n,$$

where $x_i \in \mathbb{R}$. The coefficients x_1, x_2, \ldots, x_n are called the **coordinates** of **v** with respect to the ordered basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

The mapping

vector $\mathbf{v} \mapsto its$ coordinates (x_1, x_2, \dots, x_n)

is a one-to-one correspondence between V and \mathbb{R}^n . This correspondence is linear (hence it is an isomorphism of V onto \mathbb{R}^n).