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Lecture 2-7:

Basis and coordinates.



Isomorphism

Definition. A linear mapping f : V1 → V2 is called

an isomorphism of vector spaces if it is both
one-to-one and onto.

Two vector spaces V1 and V2 are called isomorphic

if there exists an isomorphism f : V1 → V2.

The word “isomorphism” applies when two complex

structures can be mapped onto each other, in such

a way that to each part of one structure there is a

corresponding part in the other structure, where

“corresponding” means that the two parts play

similar roles in their respective structures.



Examples of isomorphisms

• M2,2(R) is isomorphic to R
4.

Isomorphism:

(

a b

c d

)

7→ (a, b, c , d).

• M2,3(R) is isomorphic to M3,2(R).

Isomorphism:

(

a1 a2 a3

b1 b2 b3

)

7→





a1 b1

a2 b2

a3 b3



.

• The plane z = 0 in R
3 is isomorphic to R

2.

Isomorphism: (x , y , 0) 7→ (x , y).

• Pn is isomorphic to R
n+1.

Isomorphism: a0+a1x+ · · ·+anx
n 7→ (a0, a1, . . . , an).



Classification problems of linear algebra

Problem 1 Given vector spaces V1 and V2,

determine whether they are isomorphic or not.

Problem 2 Given a vector space V , determine
whether V is isomorphic to R

n for some n ≥ 1.

Problem 3 Show that vector spaces R
n and R

m

are not isomorphic if m 6= n.



Linear independence

Definition. Let V be a vector space. Vectors
v1, v2, . . . , vk ∈ V are called linearly dependent if

they satisfy a relation

r1v1 + r2v2 + · · · + rkvk = 0,

where the coefficients r1, . . . , rk ∈ R are not all

equal to zero. Otherwise the vectors v1, v2, . . . , vk

are called linearly independent. That is, if

r1v1+r2v2+ · · ·+rkvk = 0 =⇒ r1 = · · · = rk = 0.

An infinite set S ⊂ V is linearly dependent if
there are some linearly dependent vectors

v1, . . . , vk ∈ S . Otherwise S is linearly

independent.



Theorem Vectors v1, . . . , vk ∈ V are linearly
dependent if and only if one of them is a linear
combination of the other k − 1 vectors.

Examples of linear independence:

• Vectors e1 = (1, 0, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0),. . . , en = (0, 0, . . . , 0, 1) in R

n.

• Matrices

(

1 0

0 0

)

,

(

0 1

0 0

)

,

(

0 0

1 0

)

,

(

0 0

0 1

)

.

• Polynomials 1, x , x2, . . . , xn, . . . .



Problem. Show that functions x , ex , and e−x are

linearly independent in C (R).

Suppose that ax + bex + ce−x = 0 for all x ∈ R, where
a, b, c are constants. We have to show that a = b = c = 0.

Divide both sides of the identity by ex :

axe−x + b + ce−2x = 0.

The left-hand side approaches b as x → +∞. =⇒ b = 0

Now ax + ce−x = 0 for all x ∈ R. For any x 6= 0 divide
both sides of the identity by x :

a + cx−1e−x = 0.

The left-hand side approaches a as x → +∞. =⇒ a = 0

Now ce−x = 0 =⇒ c = 0.



Theorem 1 Let λ1, λ2, . . . , λk be distinct real
numbers. Then the functions eλ1x , eλ2x , . . . , eλkx

are linearly independent.

Theorem 2 The set of functions

{xmeλx | λ ∈ R, m = 0, 1, 2, . . .}

is linearly independent.



Spanning sets and linear dependence

Let v0, v1, . . . , vk be vectors from a vector space V .

Proposition If v0 is a linear combination of vectors
v1, . . . , vk then

Span(v0, v1, . . . , vk) = Span(v1, . . . , vk).

Indeed, if v0 = r1v1 + · · · + rkvk , then

t0v0 + t1v1 + · · · + tkvk =

= (t0r1 + t1)v1 + · · · + (t0rk + tk)vk .

Corollary Any spanning set for a vector space is

minimal if and only if it is linearly independent.



Basis

Definition. Let V be a vector space. A linearly

independent spanning set for V is called a basis.

Suppose that a set S ⊂ V is a basis for V .

“Spanning set” means that any vector v ∈ V can be
represented as a linear combination

v = r1v1 + r2v2 + · · ·+ rkvk ,

where v1, . . . , vk are distinct vectors from S and
r1, . . . , rk ∈ R. “Linearly independent” implies that the above
representation is unique:

v = r1v1 + r2v2 + · · ·+ rkvk = r ′
1
v1 + r ′

2
v2 + · · ·+ r ′

k
vk

=⇒ (r1 − r ′
1
)v1 + (r2 − r ′

2
)v2 + · · ·+ (rk − r ′

k
)vk = 0

=⇒ r1 − r ′
1

= r2 − r ′
2

= . . . = rn − r ′
n

= 0



Examples. • Standard basis for R
n:

e1 = (1, 0, 0, . . . , 0, 0), e2 = (0, 1, 0, . . . , 0, 0),. . . ,
en = (0, 0, 0, . . . , 0, 1).
Indeed, (x1, x2, . . . , xn) = x1e1 + x2e2 + · · · + xnen.

• Matrices

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

form a basis for M2,2(R).
(

a b

c d

)

= a

(

1 0
0 0

)

+ b

(

0 1
0 0

)

+ c

(

0 0
1 0

)

+ d

(

0 0
0 1

)

.

• Polynomials 1, x , x2, . . . , xn form a basis for
Pn = {a0 + a1x + · · · + anx

n : ai ∈ R}.

• The infinite set {1, x , x2, . . . , xn, . . . } is a basis
for P , the space of all polynomials.



Problem Let v1 = (2, 5) and v2 = (1, 3). Show
that {v1, v2} is a basis for R

2.

Linear independence is obvious: v1 and v2 are not parallel.

To show spanning, it is enough to represent vectors e1 = (1, 0)
and e2 = (0, 1) as linear combinations of v1 and v2.

e1 = r1v1+r2v2 ⇐⇒

{

2r1 + r2 = 1
5r1 + 3r2 = 0

⇐⇒

{

r1 = 3
r2 = −5

e2 = r1v1+r2v2 ⇐⇒

{

2r1 + r2 = 0
5r1 + 3r2 = 1

⇐⇒

{

r1 = −1
r2 = 2

Thus e1 = 3v1 − 5v2 and e2 = −v1 + 2v2.

Then (x , y) = xe1 + ye2 = x(3v1 − 5v2) + y(−v1 + 2v2)
= (3x − y)v1 + (−5x + 2y)v2.



Let W be the set of all solutions of the ODE
y ′′(x) − y(x) = 0. W is a subspace of the vector

space C∞(R) since it is the null-space of the linear
operator L : C∞(R) → C∞(R), L(f ) = f ′′ − f .

W contains functions ex , e−x ,
hyperbolic sine sinh x = 1

2
(ex − e−x), and

hyperbolic cosine cosh x = 1

2
(ex + e−x).

We have that (sinh x)′ = cosh x ,
(cosh x)′ = sinh x , cosh2 x − sinh2 x = 1.

Proposition {ex , e−x} and {cosh x , sinh x} are

two bases for W .



Proposition {ex , e−x} and {cosh x , sinh x} are

two bases for W .

Proof: “Linear independence”: ex and e−x are linearly
independent as shown earlier.

Further, cosh 0 = 1, sinh 0 = 0, cosh′ 0 = 0, sinh′ 0 = 1.
It follows that cosh x and sinh x are not scalar multiples of
each other.

“Spanning”: Take any function f ∈ W . Consider a function
g(x) = a cosh x + b sinh x , where a = f (0), b = f ′(0).
We have g(0) = a, g ′(0) = b.

The initial value problem y ′′ − y = 0, y(0) = a, y ′(0) = b

has a unique solution. Therefore f = g .

Thus f (x) = a cosh x + b sinh x

= a

2
(ex + e−x) + b

2
(ex − e−x) = 1

2
(a + b)ex + 1

2
(a − b)e−x .



Basis and coordinates

If {v1, v2, . . . , vn} is a basis for a vector space V ,
then any vector v ∈ V has a unique representation

v = x1v1 + x2v2 + · · · + xnvn,

where xi ∈ R. The coefficients x1, x2, . . . , xn are

called the coordinates of v with respect to the
ordered basis v1, v2, . . . , vn.

The mapping

vector v 7→ its coordinates (x1, x2, . . . , xn)

is a one-to-one correspondence between V and R
n.

This correspondence is linear (hence it is an

isomorphism of V onto R
n).


