MATH 311-504
 Topics in Applied Mathematics

Lecture 2-7:
 Basis and coordinates.

Isomorphism

Definition. A linear mapping $f: V_{1} \rightarrow V_{2}$ is called an isomorphism of vector spaces if it is both one-to-one and onto.
Two vector spaces V_{1} and V_{2} are called isomorphic if there exists an isomorphism $f: V_{1} \rightarrow V_{2}$.

The word "isomorphism" applies when two complex structures can be mapped onto each other, in such a way that to each part of one structure there is a corresponding part in the other structure, where "corresponding" means that the two parts play similar roles in their respective structures.

Examples of isomorphisms

- $\mathcal{M}_{2,2}(\mathbb{R})$ is isomorphic to \mathbb{R}^{4}.

Isomorphism: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto(a, b, c, d)$.

- $\mathcal{M}_{2,3}(\mathbb{R})$ is isomorphic to $\mathcal{M}_{3,2}(\mathbb{R})$.

Isomorphism: $\left(\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right) \mapsto\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right)$.

- The plane $z=0$ in \mathbb{R}^{3} is isomorphic to \mathbb{R}^{2}. Isomorphism: $\quad(x, y, 0) \mapsto(x, y)$.
- \mathcal{P}_{n} is isomorphic to \mathbb{R}^{n+1}.

Isomorphism: $a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mapsto\left(a_{0}, a_{1}, \ldots, a_{n}\right)$.

Classification problems of linear algebra

Problem 1 Given vector spaces V_{1} and V_{2}, determine whether they are isomorphic or not.

Problem 2 Given a vector space V, determine whether V is isomorphic to \mathbb{R}^{n} for some $n \geq 1$.

Problem 3 Show that vector spaces \mathbb{R}^{n} and \mathbb{R}^{m} are not isomorphic if $m \neq n$.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{R}$ are not all equal to zero. Otherwise the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0 .
$$

An infinite set $S \subset V$ is linearly dependent if there are some linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in S$. Otherwise S is linearly independent.

Theorem Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ are linearly dependent if and only if one of them is a linear combination of the other $k-1$ vectors.

Examples of linear independence:

- Vectors $\mathbf{e}_{1}=(1,0,0, \ldots, 0)$,
$\mathbf{e}_{2}=(0,1,0, \ldots, 0), \ldots, \mathbf{e}_{n}=(0,0, \ldots, 0,1)$ in \mathbb{R}^{n}.
- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
- Polynomials $1, x, x^{2}, \ldots, x^{n}, \ldots$.

Problem. Show that functions x, e^{x}, and e^{-x} are linearly independent in $C(\mathbb{R})$.

Suppose that $a x+b e^{x}+c e^{-x}=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.
Divide both sides of the identity by e^{x} :

$$
a x e^{-x}+b+c e^{-2 x}=0 .
$$

The left-hand side approaches b as $x \rightarrow+\infty$. $\Longrightarrow b=0$

Now $a x+c e^{-x}=0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x :

$$
a+c x^{-1} e^{-x}=0 .
$$

The left-hand side approaches a as $x \rightarrow+\infty . \quad \Longrightarrow a=0$ Now $c e^{-x}=0 \Longrightarrow c=0$.

Theorem 1 Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct real numbers. Then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.

Theorem 2 The set of functions

$$
\left\{x^{m} e^{\lambda x} \mid \lambda \in \mathbb{R}, m=0,1,2, \ldots\right\}
$$

is linearly independent.

Spanning sets and linear dependence

Let $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be vectors from a vector space V.
Proposition If \mathbf{v}_{0} is a linear combination of vectors
$\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ then

$$
\operatorname{Span}\left(\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)
$$

Indeed, if $\mathbf{v}_{0}=r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}$, then

$$
\begin{aligned}
& t_{0} \mathbf{v}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}= \\
= & \left(t_{0} r_{1}+t_{1}\right) \mathbf{v}_{1}+\cdots+\left(t_{0} r_{k}+t_{k}\right) \mathbf{v}_{k}
\end{aligned}
$$

Corollary Any spanning set for a vector space is minimal if and only if it is linearly independent.

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

Suppose that a set $S \subset V$ is a basis for V.
"Spanning set" means that any vector $\mathbf{v} \in V$ can be represented as a linear combination

$$
\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{1}, \ldots, r_{k} \in \mathbb{R}$. "Linearly independent" implies that the above representation is unique:

$$
\begin{gathered}
\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=r_{1}^{\prime} \mathbf{v}_{1}+r_{2}^{\prime} \mathbf{v}_{2}+\cdots+r_{k}^{\prime} \mathbf{v}_{k} \\
\Longrightarrow \quad\left(r_{1}-r_{1}^{\prime}\right) \mathbf{v}_{1}+\left(r_{2}-r_{2}^{\prime}\right) \mathbf{v}_{2}+\cdots+\left(r_{k}-r_{k}^{\prime} \mathbf{v}_{k}=\mathbf{0}\right. \\
\quad \Longrightarrow r_{1}-r_{1}^{\prime}=r_{2}-r_{2}^{\prime}=\ldots=r_{n}-r_{n}^{\prime}=0
\end{gathered}
$$

Examples. - Standard basis for \mathbb{R}^{n} :
$\mathbf{e}_{1}=(1,0,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1,0, \ldots, 0,0), \ldots$,
$\mathbf{e}_{n}=(0,0,0, \ldots, 0,1)$.
Indeed, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}$.

- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
form a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+c\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)+d\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
- Polynomials $1, x, x^{2}, \ldots, x^{n}$ form a basis for $\mathcal{P}_{n}=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}: a_{i} \in \mathbb{R}\right\}$.
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$ is a basis for \mathcal{P}, the space of all polynomials.

Problem Let $\mathbf{v}_{1}=(2,5)$ and $\mathbf{v}_{2}=(1,3)$. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for \mathbb{R}^{2}.

Linear independence is obvious: \mathbf{v}_{1} and \mathbf{v}_{2} are not parallel.
To show spanning, it is enough to represent vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ as linear combinations of \mathbf{v}_{1} and \mathbf{v}_{2}.

$$
\begin{aligned}
& \mathbf{e}_{1}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array} { l }
{ 2 r _ { 1 } + r _ { 2 } = 1 } \\
{ 5 r _ { 1 } + 3 r _ { 2 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
r_{1}=3 \\
r_{2}=-5
\end{array}\right.\right. \\
& \mathbf{e}_{2}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array} { l }
{ 2 r _ { 1 } + r _ { 2 } = 0 } \\
{ 5 r _ { 1 } + 3 r _ { 2 } = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
r_{1}=-1 \\
r_{2}=2
\end{array}\right.\right.
\end{aligned}
$$

Thus $\mathbf{e}_{1}=3 \mathbf{v}_{1}-5 \mathbf{v}_{2}$ and $\mathbf{e}_{2}=-\mathbf{v}_{1}+2 \mathbf{v}_{2}$.
Then $(x, y)=x \mathbf{e}_{1}+y \mathbf{e}_{2}=x\left(3 \mathbf{v}_{1}-5 \mathbf{v}_{2}\right)+y\left(-\mathbf{v}_{1}+2 \mathbf{v}_{2}\right)$
$=(3 x-y) \mathbf{v}_{1}+(-5 x+2 y) \mathbf{v}_{2}$.

Let W be the set of all solutions of the ODE $y^{\prime \prime}(x)-y(x)=0$. W is a subspace of the vector space $C^{\infty}(\mathbb{R})$ since it is the null-space of the linear operator $L: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), L(f)=f^{\prime \prime}-f$.
W contains functions e^{x}, e^{-x},
hyperbolic sine $\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$, and hyperbolic cosine $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$.
We have that $(\sinh x)^{\prime}=\cosh x$, $(\cosh x)^{\prime}=\sinh x, \quad \cosh ^{2} x-\sinh ^{2} x=1$.

Proposition $\left\{e^{x}, e^{-x}\right\}$ and $\{\cosh x, \sinh x\}$ are two bases for W.

Proposition $\left\{e^{x}, e^{-x}\right\}$ and $\{\cosh x, \sinh x\}$ are two bases for W.

Proof: "Linear independence": e^{x} and e^{-x} are linearly independent as shown earlier.
Further, $\cosh 0=1, \sinh 0=0, \cosh ^{\prime} 0=0, \sinh ^{\prime} 0=1$. It follows that $\cosh x$ and $\sinh x$ are not scalar multiples of each other.
"Spanning": Take any function $f \in W$. Consider a function $g(x)=a \cosh x+b \sinh x$, where $a=f(0), b=f^{\prime}(0)$. We have $g(0)=a, g^{\prime}(0)=b$.
The initial value problem $y^{\prime \prime}-y=0, y(0)=a, y^{\prime}(0)=b$ has a unique solution. Therefore $f=g$.
Thus $f(x)=a \cosh x+b \sinh x$

$$
=\frac{a}{2}\left(e^{x}+e^{-x}\right)+\frac{b}{2}\left(e^{x}-e^{-x}\right)=\frac{1}{2}(a+b) e^{x}+\frac{1}{2}(a-b) e^{-x} .
$$

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The mapping

$$
\text { vector } \mathbf{v} \mapsto \text { its coordinates }\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

is a one-to-one correspondence between V and \mathbb{R}^{n}.
This correspondence is linear (hence it is an isomorphism of V onto \mathbb{R}^{n}).

