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Basis

Definition. Let V be a vector space. A linearly
independent spanning set for V is called a basis.

Equivalently, a subset S ⊂ V is a basis for V if any

vector v ∈ V is uniquely represented as a linear
combination

v = r1v1 + r2v2 + · · · + rkvk ,

where v1, . . . , vk are distinct vectors from S and
r1, . . . , rk ∈ R.



Examples. • Standard basis for Rn:
e1 = (1, 0, 0, . . . , 0, 0), e2 = (0, 1, 0, . . . , 0, 0),. . . ,

en = (0, 0, 0, . . . , 0, 1).

• Matrices
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form a basis for M2,2(R).

• n + 1 polynomials 1, x , x2, . . . , xn form a basis

for Pn = {a0 + a1x + · · · + anx
n : ai ∈ R}.

• The infinite set {1, x , x2, . . . , xn, . . . } is a basis
for P , the space of all polynomials.



Basis and coordinates

If {v1, v2, . . . , vn} is a basis for a vector space V ,
then any vector v ∈ V has a unique representation

v = x1v1 + x2v2 + · · · + xnvn,

where xi ∈ R. The coefficients x1, x2, . . . , xn are

called the coordinates of v with respect to the
ordered basis v1, v2, . . . , vn.

The mapping

vector v 7→ its coordinates (x1, x2, . . . , xn)

is a one-to-one correspondence between V and Rn.
This correspondence is linear (hence it is an

isomorphism of V onto Rn).



Vectors v1=(2, 5) and v2=(1, 3) form a basis for R2.

Problem 1. Find coordinates of the vector
v = (3, 4) with respect to the basis v1, v2.

The desired coordinates x , y satisfy

v = xv1+yv2 ⇐⇒

{

2x + y = 3

5x + 3y = 4
⇐⇒

{

x = 5

y = −7

Problem 2. Find the vector w whose coordinates

with respect to the basis v1, v2 are (3, 4).

w = 3v1 + 4v2 = 3(2, 5) + 4(1, 3) = (10, 27)



The function F (x) = cosh(x + 1) belongs to the
vector space W = {f ∈ C∞ | f ′′ − f = 0}.

Problem 1. Find coordinates of F with respect to

the basis {ex
, e−x}.

F (x) = cosh(x+1) = 1
2(e

x+1 + e−(x+1)) = e

2 ex + 1
2e

e−x .

Problem 2. Find coordinates of F with respect to
the basis {cosh x , sinh x}.

We have F (x) = a cosh x + b sinh x , where
a = F (0) = cosh 1, b = F ′(0) = sinh 1.



Bases for Rn

Let v1, v2, . . . , vm be vectors in Rn.

Theorem 1 If m < n then the vectors
v1, v2, . . . , vm do not span Rn.

Theorem 2 If m > n then the vectors

v1, v2, . . . , vm are linearly dependent.

Theorem 3 If m = n then the following
conditions are equivalent:

(i) {v1, v2, . . . , vn} is a basis for Rn;
(ii) {v1, v2, . . . , vn} is a spanning set for Rn;
(iii) {v1, v2, . . . , vn} is a linearly independent set.



Example. Consider vectors v1 = (1,−1, 1),
v2 = (1, 0, 0), v3 = (1, 1, 1), and v4 = (1, 2, 4) in R3.

Vectors v1 and v2 are linearly independent (as they

are not parallel), but they do not span R3.

Vectors v1, v2, v3 are linearly independent since
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= −(−2) = 2 6= 0.

Therefore {v1, v2, v3} is a basis for R3.

Vectors v1, v2, v3, v4 span R3 (because v1, v2, v3

already span R3), but they are linearly dependent.



Dimension

Theorem Any vector space V has a basis. All

bases for V are of the same cardinality.

Definition. The dimension of a vector space V ,
denoted dim V , is the cardinality of its bases.

Remark. By definition, two sets are of the same cardinality if
there exists a one-to-one correspondence between their elements.

For a finite set, the cardinality is the number of its elements.

For an infinite set, the cardinality is a more sophisticated
notion. For example, Z and R are infinite sets of different
cardinalities while Z and Q are infinite sets of the same
cardinality.



Examples. • dim Rn = n

• M2,2(R): the space of 2×2 matrices

dimM2,2(R) = 4

• Mm,n(R): the space of m×n matrices

dimMm,n(R) = mn

• Pn: polynomials of degree at most n

dimPn = n + 1

• P : the space of all polynomials

dimP = ∞

• {0}: the trivial vector space
dim {0} = 0



Classification problems of linear algebra

Theorem Two vector spaces are isomorphic if and

only if they have the same dimension. In particular,
a vector space V is isomorphic to Rn if and only if

dim V = n.

Example. Both P and R∞ are infinite-dimensional
vector spaces. However they are not isomorphic.



How to find a basis?

Theorem Let S be a subset of a vector space V .
Then the following conditions are equivalent:

(i) S is a linearly independent spanning set for V ,

i.e., a basis;

(ii) S is a minimal spanning set for V ;

(iii) S is a maximal linearly independent subset of V .

“Minimal spanning set” means “remove any element
from this set, and it is no longer a spanning set”.

“Maximal linearly independent subset” means

“add any element of V to this set, and it will
become linearly dependent”.



Theorem Let V be a vector space. Then

(i) any spanning set for V can be reduced to a
minimal spanning set;

(ii) any linearly independent subset of V can be
extended to a maximal linearly independent set.

Equivalently, any spanning set contains a basis,

while any linearly independent set is contained in a
basis.

Corollary A vector space is finite-dimensional if

and only if it is spanned by a finite set.



How to find a basis?

Approach 1. Get a spanning set for the vector
space, then reduce this set to a basis.

Proposition Let v0, v1, . . . , vk be a spanning set
for a vector space V . If v0 is a linear combination

of vectors v1, . . . , vk then v1, . . . , vk is also a
spanning set for V .

Indeed, if v0 = r1v1 + · · · + rkvk , then

t0v0 + t1v1 + · · · + tkvk =

= (t0r1 + t1)v1 + · · · + (t0rk + tk)vk .



How to find a basis?

Approach 2. Build a maximal linearly independent
set adding one vector at a time.

If the vector space V is trivial, it has the empty basis.

If V 6= {0}, pick any vector v1 6= 0.

If v1 spans V , it is a basis. Otherwise pick any
vector v2 ∈ V that is not in the span of v1.

If v1 and v2 span V , they constitute a basis.
Otherwise pick any vector v3 ∈ V that is not in the
span of v1 and v2.

And so on. . .


