MATH 311-504
 Topics in Applied Mathematics

Lecture 2-8:
 Basis and dimension.

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

Equivalently, a subset $S \subset V$ is a basis for V if any vector $\mathbf{v} \in V$ is uniquely represented as a linear combination

$$
\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.

Examples. - Standard basis for \mathbb{R}^{n} :
$\mathbf{e}_{1}=(1,0,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1,0, \ldots, 0,0), \ldots$,
$\mathbf{e}_{n}=(0,0,0, \ldots, 0,1)$.

- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
form a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.
- $n+1$ polynomials $1, x, x^{2}, \ldots, x^{n}$ form a basis for $\mathcal{P}_{n}=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}: a_{i} \in \mathbb{R}\right\}$.
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$ is a basis for \mathcal{P}, the space of all polynomials.

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The mapping

$$
\text { vector } \mathbf{v} \mapsto \text { its coordinates }\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

is a one-to-one correspondence between V and \mathbb{R}^{n}.
This correspondence is linear (hence it is an isomorphism of V onto \mathbb{R}^{n}).

Vectors $\mathbf{v}_{1}=(2,5)$ and $\mathbf{v}_{2}=(1,3)$ form a basis for \mathbb{R}^{2}.
Problem 1. Find coordinates of the vector $\mathbf{v}=(3,4)$ with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$.

The desired coordinates x, y satisfy
$\mathbf{v}=x \mathbf{v}_{1}+y \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array}{l}2 x+y=3 \\ 5 x+3 y=4\end{array} \Longleftrightarrow\left\{\begin{array}{l}x=5 \\ y=-7\end{array}\right.\right.$
Problem 2. Find the vector \mathbf{w} whose coordinates with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ are $(3,4)$.
$\mathbf{w}=3 \mathbf{v}_{1}+4 \mathbf{v}_{2}=3(2,5)+4(1,3)=(10,27)$

The function $F(x)=\cosh (x+1)$ belongs to the vector space $W=\left\{f \in C^{\infty} \mid f^{\prime \prime}-f=0\right\}$.

Problem 1. Find coordinates of F with respect to the basis $\left\{e^{x}, e^{-x}\right\}$.
$F(x)=\cosh (x+1)=\frac{1}{2}\left(e^{x+1}+e^{-(x+1)}\right)=\frac{e}{2} e^{x}+\frac{1}{2 e} e^{-x}$.
Problem 2. Find coordinates of F with respect to the basis $\{\cosh x, \sinh x\}$.

We have $F(x)=a \cosh x+b \sinh x$, where $a=F(0)=\cosh 1, \quad b=F^{\prime}(0)=\sinh 1$.

Bases for \mathbb{R}^{n}

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ be vectors in \mathbb{R}^{n}.
Theorem 1 If $m<n$ then the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ do not span \mathbb{R}^{n}.
Theorem 2 If $m>n$ then the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ are linearly dependent.
Theorem 3 If $m=n$ then the following conditions are equivalent:
(i) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for \mathbb{R}^{n};
(ii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set for \mathbb{R}^{n};
(iii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set.

Example. Consider vectors $\mathbf{v}_{1}=(1,-1,1)$, $\mathbf{v}_{2}=(1,0,0), \mathbf{v}_{3}=(1,1,1)$, and $\mathbf{v}_{4}=(1,2,4)$ in \mathbb{R}^{3}.

Vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent (as they are not parallel), but they do not span \mathbb{R}^{3}.

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent since

$$
\left|\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right|=-\left|\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right|=-(-2)=2 \neq 0
$$

Therefore $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}.
Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ span \mathbb{R}^{3} (because $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ already span \mathbb{R}^{3}), but they are linearly dependent.

Dimension

Theorem Any vector space V has a basis. All bases for V are of the same cardinality.

Definition. The dimension of a vector space V, denoted $\operatorname{dim} V$, is the cardinality of its bases.

Remark. By definition, two sets are of the same cardinality if there exists a one-to-one correspondence between their elements.
For a finite set, the cardinality is the number of its elements.
For an infinite set, the cardinality is a more sophisticated notion. For example, \mathbb{Z} and \mathbb{R} are infinite sets of different cardinalities while \mathbb{Z} and \mathbb{Q} are infinite sets of the same cardinality.

Examples. - $\operatorname{dim} \mathbb{R}^{n}=n$

- $\mathcal{M}_{2,2}(\mathbb{R}):$ the space of 2×2 matrices $\operatorname{dim} \mathcal{M}_{2,2}(\mathbb{R})=4$
- $\mathcal{M}_{m, n}(\mathbb{R}):$ the space of $m \times n$ matrices $\operatorname{dim} \mathcal{M}_{m, n}(\mathbb{R})=m n$
- \mathcal{P}_{n} : polynomials of degree at most n $\operatorname{dim} \mathcal{P}_{n}=n+1$
- \mathcal{P} : the space of all polynomials
$\operatorname{dim} \mathcal{P}=\infty$
- $\{\mathbf{0}\}$: the trivial vector space $\operatorname{dim}\{\mathbf{0}\}=0$

Classification problems of linear algebra

Theorem Two vector spaces are isomorphic if and only if they have the same dimension. In particular, a vector space V is isomorphic to \mathbb{R}^{n} if and only if $\operatorname{dim} V=n$.

Example. Both \mathcal{P} and \mathbb{R}^{∞} are infinite-dimensional vector spaces. However they are not isomorphic.

How to find a basis?

Theorem Let S be a subset of a vector space V. Then the following conditions are equivalent:
(i) S is a linearly independent spanning set for V, i.e., a basis;
(ii) S is a minimal spanning set for V;
(iii) S is a maximal linearly independent subset of V.
"Minimal spanning set" means "remove any element from this set, and it is no longer a spanning set".
"Maximal linearly independent subset" means "add any element of V to this set, and it will become linearly dependent".

Theorem Let V be a vector space. Then
(i) any spanning set for V can be reduced to a minimal spanning set;
(ii) any linearly independent subset of V can be extended to a maximal linearly independent set.

Equivalently, any spanning set contains a basis, while any linearly independent set is contained in a basis.

Corollary A vector space is finite-dimensional if and only if it is spanned by a finite set.

How to find a basis?

Approach 1. Get a spanning set for the vector space, then reduce this set to a basis.

Proposition Let $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be a spanning set for a vector space V. If \mathbf{v}_{0} is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is also a spanning set for V.

Indeed, if $\mathbf{v}_{0}=r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}$, then

$$
\begin{gathered}
t_{0} \mathbf{v}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}= \\
=\left(t_{0} r_{1}+t_{1}\right) \mathbf{v}_{1}+\cdots+\left(t_{0} r_{k}+t_{k}\right) \mathbf{v}_{k}
\end{gathered}
$$

How to find a basis?

Approach 2. Build a maximal linearly independent set adding one vector at a time.

If the vector space V is trivial, it has the empty basis.
If $V \neq\{\mathbf{0}\}$, pick any vector $\mathbf{v}_{1} \neq \mathbf{0}$.
If \mathbf{v}_{1} spans V, it is a basis. Otherwise pick any vector $\mathbf{v}_{2} \in V$ that is not in the span of \mathbf{v}_{1}. If \mathbf{v}_{1} and \mathbf{v}_{2} span V, they constitute a basis. Otherwise pick any vector $\mathbf{v}_{3} \in V$ that is not in the span of \mathbf{v}_{1} and \mathbf{v}_{2}.
And so on...

