MATH 311-504 Topics in Applied Mathematics Lecture 2-8: Basis and dimension.

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a **basis**.

Equivalently, a subset $S \subset V$ is a basis for V if any vector $\mathbf{v} \in V$ is *uniquely represented* as a linear combination

$$\mathbf{v}=r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k,$$

where $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \ldots, r_k \in \mathbb{R}$.

Examples. • Standard basis for \mathbb{R}^n : $\mathbf{e}_1 = (1, 0, 0, \dots, 0, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0, 0), \dots, \ \mathbf{e}_n = (0, 0, 0, \dots, 0, 1).$

- Matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ form a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.
- n+1 polynomials $1, x, x^2, \ldots, x^n$ form a basis for $\mathcal{P}_n = \{a_0 + a_1x + \cdots + a_nx^n : a_i \in \mathbb{R}\}.$

• The infinite set $\{1, x, x^2, \dots, x^n, \dots\}$ is a basis for \mathcal{P} , the space of all polynomials.

Basis and coordinates

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$\mathbf{v}=x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots+x_n\mathbf{v}_n,$$

where $x_i \in \mathbb{R}$. The coefficients x_1, x_2, \ldots, x_n are called the **coordinates** of **v** with respect to the ordered basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

The mapping

vector $\mathbf{v} \mapsto its$ coordinates (x_1, x_2, \dots, x_n)

is a one-to-one correspondence between V and \mathbb{R}^n . This correspondence is linear (hence it is an isomorphism of V onto \mathbb{R}^n). Vectors $\mathbf{v}_1 = (2, 5)$ and $\mathbf{v}_2 = (1, 3)$ form a basis for \mathbb{R}^2 . **Problem 1.** Find coordinates of the vector $\mathbf{v} = (3, 4)$ with respect to the basis $\mathbf{v}_1, \mathbf{v}_2$.

The desired coordinates x, y satisfy

$$\mathbf{v} = x\mathbf{v}_1 + y\mathbf{v}_2 \iff \begin{cases} 2x + y = 3\\ 5x + 3y = 4 \end{cases} \iff \begin{cases} x = 5\\ y = -7 \end{cases}$$

Problem 2. Find the vector **w** whose coordinates with respect to the basis $\mathbf{v}_1, \mathbf{v}_2$ are (3, 4).

$$\mathbf{w} = 3\mathbf{v}_1 + 4\mathbf{v}_2 = 3(2,5) + 4(1,3) = (10,27)$$

The function $F(x) = \cosh(x+1)$ belongs to the vector space $W = \{f \in C^{\infty} \mid f'' - f = 0\}.$

Problem 1. Find coordinates of *F* with respect to the basis $\{e^x, e^{-x}\}$.

$$F(x) = \cosh(x+1) = \frac{1}{2}(e^{x+1} + e^{-(x+1)}) = \frac{e}{2}e^x + \frac{1}{2e}e^{-x}$$

Problem 2. Find coordinates of F with respect to the basis $\{\cosh x, \sinh x\}$.

We have $F(x) = a \cosh x + b \sinh x$, where $a = F(0) = \cosh 1$, $b = F'(0) = \sinh 1$.

Bases for \mathbb{R}^n

Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ be vectors in \mathbb{R}^n .

Theorem 1 If m < n then the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ do not span \mathbb{R}^n .

Theorem 2 If m > n then the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ are linearly dependent.

Theorem 3 If m = n then the following conditions are equivalent:

(i) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for \mathbb{R}^n ; (ii) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a spanning set for \mathbb{R}^n ; (iii) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set. *Example.* Consider vectors $\mathbf{v}_1 = (1, -1, 1)$, $\mathbf{v}_2 = (1, 0, 0)$, $\mathbf{v}_3 = (1, 1, 1)$, and $\mathbf{v}_4 = (1, 2, 4)$ in \mathbb{R}^3 .

Vectors \mathbf{v}_1 and \mathbf{v}_2 are linearly independent (as they are not parallel), but they do not span \mathbb{R}^3 .

Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent since

Therefore $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 .

Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ span \mathbb{R}^3 (because $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ already span \mathbb{R}^3), but they are linearly dependent.

Dimension

Theorem Any vector space V has a basis. All bases for V are of the same cardinality.

Definition. The **dimension** of a vector space V, denoted dim V, is the cardinality of its bases.

Remark. By definition, two sets are of the same cardinality if there exists a one-to-one correspondence between their elements. For a finite set, the cardinality is the number of its elements. For an infinite set, the cardinality is a more sophisticated notion. For example, \mathbb{Z} and \mathbb{R} are infinite sets of different cardinalities while \mathbb{Z} and \mathbb{Q} are infinite sets of the same cardinality.

Examples. • dim $\mathbb{R}^n = n$

• $\mathcal{M}_{2,2}(\mathbb{R})$: the space of 2×2 matrices dim $\mathcal{M}_{2,2}(\mathbb{R}) = 4$

• $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices dim $\mathcal{M}_{m,n}(\mathbb{R}) = mn$

• \mathcal{P}_n : polynomials of degree at most ndim $\mathcal{P}_n = n + 1$

• $\mathcal{P}:$ the space of all polynomials $\dim \mathcal{P} = \infty$

•
$$\{\mathbf{0}\}$$
: the trivial vector space dim $\{\mathbf{0}\} = 0$

Theorem Two vector spaces are isomorphic if and only if they have the same dimension. In particular, a vector space V is isomorphic to \mathbb{R}^n if and only if dim V = n.

Example. Both \mathcal{P} and \mathbb{R}^{∞} are infinite-dimensional vector spaces. However they are not isomorphic.

How to find a basis?

- **Theorem** Let S be a subset of a vector space V. Then the following conditions are equivalent:
- (i) S is a linearly independent spanning set for V, i.e., a basis;
- (ii) S is a minimal spanning set for V;
- (iii) S is a maximal linearly independent subset of V.

"Minimal spanning set" means "remove any element from this set, and it is no longer a spanning set". "Maximal linearly independent subset" means "add any element of V to this set, and it will become linearly dependent". Theorem Let V be a vector space. Then(i) any spanning set for V can be reduced to a minimal spanning set;

(ii) any linearly independent subset of V can be extended to a maximal linearly independent set.

Equivalently, any spanning set contains a basis, while any linearly independent set is contained in a basis.

Corollary A vector space is finite-dimensional if and only if it is spanned by a finite set.

How to find a basis?

Approach 1. Get a spanning set for the vector space, then reduce this set to a basis.

Proposition Let $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k$ be a spanning set for a vector space V. If \mathbf{v}_0 is a linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ then $\mathbf{v}_1, \dots, \mathbf{v}_k$ is also a spanning set for V.

Indeed, if $\mathbf{v}_0 = r_1 \mathbf{v}_1 + \cdots + r_k \mathbf{v}_k$, then $t_0 \mathbf{v}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k =$ $= (t_0 r_1 + t_1) \mathbf{v}_1 + \cdots + (t_0 r_k + t_k) \mathbf{v}_k$.

How to find a basis?

Approach 2. Build a maximal linearly independent set adding one vector at a time.

If the vector space V is trivial, it has the empty basis. If $V \neq \{0\}$, pick any vector $\mathbf{v}_1 \neq \mathbf{0}$. If \mathbf{v}_1 spans V, it is a basis. Otherwise pick any vector $\mathbf{v}_2 \in V$ that is not in the span of \mathbf{v}_1 .

If \mathbf{v}_1 and \mathbf{v}_2 span V, they constitute a basis. Otherwise pick any vector $\mathbf{v}_3 \in V$ that is not in the span of \mathbf{v}_1 and \mathbf{v}_2 .

And so on...