MATH 311-504
Topics in Applied Mathematics

Lecture 2-9:
 Basis and dimension (continued).
 Matrix of a linear transformation.

Basis and dimension

Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

Theorem Any vector space V has a basis. If V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The dimension of a vector space V, denoted $\operatorname{dim} V$, is the number of elements in any of its bases.

Examples. - $\operatorname{dim} \mathbb{R}^{n}=n$

- $\mathcal{M}_{m, n}(\mathbb{R}):$ the space of $m \times n$ matrices $\operatorname{dim} \mathcal{M}_{m, n}(\mathbb{R})=m n$
- \mathcal{P}_{n} : polynomials of degree at most n $\operatorname{dim} \mathcal{P}_{n}=n+1$
- \mathcal{P} : the space of all polynomials $\operatorname{dim} \mathcal{P}=\infty$
- $\{\mathbf{0}\}$: the trivial vector space $\operatorname{dim}\{\mathbf{0}\}=0$

Bases for \mathbb{R}^{n}

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ be vectors in \mathbb{R}^{n}.
Theorem 1 If $m<n$ then the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ do not span \mathbb{R}^{n}.
Theorem 2 If $m>n$ then the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ are linearly dependent.
Theorem 3 If $m=n$ then the following conditions are equivalent:
(i) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for \mathbb{R}^{n};
(ii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set for \mathbb{R}^{n};
(iii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set.

Theorem Let S be a subset of a vector space V. Then the following conditions are equivalent:
(i) S is a linearly independent spanning set for V, i.e., a basis;
(ii) S is a minimal spanning set for V;
(iii) S is a maximal linearly independent subset of V.
"Minimal spanning set" means "remove any element from this set, and it is no longer a spanning set".
"Maximal linearly independent subset" means "add any element of V to this set, and it will become linearly dependent".

How to find a basis?

Theorem Let V be a vector space. Then
(i) any spanning set for V can be reduced to a minimal spanning set;
(ii) any linearly independent subset of V can be extended to a maximal linearly independent set.

That is, any spanning set contains a basis, while any linearly independent set is contained in a basis.

Approach 1. Get a spanning set for the vector space, then reduce this set to a basis.
Approach 2. Build a maximal linearly independent set adding one vector at a time.

Example. $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad f(\mathbf{x})=\left(\begin{array}{rrr}1 & 1 & -1 \\ 2 & 1 & 0\end{array}\right) \mathbf{x}$.
Find the dimension of the image of f.
The image of f is spanned by columns of the matrix: $\mathbf{v}_{1}=(1,2), \mathbf{v}_{2}=(1,1)$, and $\mathbf{v}_{3}=(-1,0)$. Observe that $\mathbf{v}_{3}=\mathbf{v}_{1}-2 \mathbf{v}_{2}$. It follows that $\operatorname{Im} f$ is spanned by vectors \mathbf{v}_{1} and \mathbf{v}_{2} alone. Clearly, \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent. Hence $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for $\operatorname{Im} f$ and $\operatorname{dim} \operatorname{Im} f=2$.

Alternatively, since \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent, they constitute a basis for \mathbb{R}^{2}.
It follows that $\operatorname{Im} f=\mathbb{R}^{2}$ and $\operatorname{dim} \operatorname{Im} f=2$.

Example. $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad f(\mathbf{x})=\left(\begin{array}{rrr}1 & 1 & -1 \\ 2 & 1 & 0\end{array}\right) \mathbf{x}$.
Find the dimension of the null-space of f.
The null-space of f is the solution set of the system $\left(\begin{array}{rrr}1 & 1 & -1 \\ 2 & 1 & 0\end{array}\right) \mathbf{x}=\mathbf{0}$.
To solve the system, we convert the matrix to reduced form:

$$
\left(\begin{array}{rrr}
1 & 1 & -1 \\
2 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & -1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right)
$$

Hence $(x, y, z) \in \operatorname{Null} f$ if $x+z=y-2 z=0$.
General solution: $(x, y, z)=(-t, 2 t, t), t \in \mathbb{R}$.
Thus Null f is the line $t(-1,2,1)$ and $\operatorname{dim} \operatorname{Null} f=1$.

Example. $\quad L: \mathcal{P}_{4} \rightarrow \mathcal{P}_{4}, \quad(L p)(x)=p(x)+p(-x)$. Find the dimensions of $\operatorname{Im} L$ and Null L.
$p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}$
$\Longrightarrow(L p)(x)=2 a_{0}+2 a_{2} x^{2}+2 a_{4} x^{4}$.
Since $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ is a basis for \mathcal{P}_{4}, the image of L is spanned by polynomials $L 1, L x, L x^{2}, L x^{3}, L x^{4}$. $L 1=2, L x^{2}=2 x^{2}, L x^{4}=2 x^{4}, L x=L x^{3}=0$. Hence $\operatorname{Im} L$ is spanned by $1, x^{2}, x^{4}$. Clearly, $1, x^{2}, x^{4}$ are linearly independent so that they form a basis for $\operatorname{Im} L$ and $\operatorname{dim} \operatorname{Im} L=3$.

The null-space of L consists of polynomials $a_{1} x+a_{3} x^{3}$. That is, it is spanned by x and x^{3}. Thus $\left\{x, x^{3}\right\}$ is a basis for $\operatorname{Null} L$ and $\operatorname{dim} \operatorname{Null} L=2$.

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The mapping

$$
\text { vector } \mathbf{v} \mapsto \text { its coordinates }\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

provides a one-to-one correspondence between V and \mathbb{R}^{n}. Besides, this mapping is linear.

Matrix of a linear mapping

Let V, W be vector spaces and $f: V \rightarrow W$ be a linear map. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.
Let $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}$ be a basis for W and $g_{2}: W \rightarrow \mathbb{R}^{m}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ f \circ g_{1}^{-1}$ is a linear mapping of \mathbb{R}^{n} to \mathbb{R}^{m}. It is represented as $\mathbf{v} \mapsto A \mathbf{v}$, where A is an $m \times n$ matrix.
A is called the matrix of f with respect to bases $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$. Columns of A are coordinates of vectors $f\left(\mathbf{v}_{1}\right), \ldots, f\left(\mathbf{v}_{n}\right)$ with respect to the basis $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$.

Examples. - $D: \mathcal{P}_{2} \rightarrow \mathcal{P}_{1},(D p)(x)=p^{\prime}(x)$.
Let A_{D} be the matrix of D with respect to the bases $1, x, x^{2}$ and $1, x$. Columns of A_{D} are coordinates of polynomials $D 1, D x, D x^{2}$ w.r.t. the basis $1, x$.
$D 1=0, D x=1, D x^{2}=2 x \Longrightarrow A_{D}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$

- $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}, \quad(L p)(x)=p(x+1)$.

Let A_{L} be the matrix of L w.r.t. the basis $1, x, x^{2}$. $L 1=1, L x=1+x, L x^{2}=(x+1)^{2}=1+2 x+x^{2}$.
$\Longrightarrow A_{L}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$

Problem. Consider a linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
L\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y} .
$$

Find the matrix of L with respect to the basis
$\mathbf{v}_{1}=(3,1), \mathbf{v}_{2}=(2,1)$.
Let N be the desired matrix. Columns of N are coordinates of the vectors $L\left(\mathbf{v}_{1}\right)$ and $L\left(\mathbf{v}_{2}\right)$ w.r.t. the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$.

$$
L\left(\mathbf{v}_{1}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{3}{1}=\binom{4}{1}, \quad L\left(\mathbf{v}_{2}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{2}{1}=\binom{3}{1} .
$$

Clearly, $\quad L\left(\mathbf{v}_{2}\right)=\mathbf{v}_{1}=1 \mathbf{v}_{1}+0 \mathbf{v}_{2}$.
$L\left(\mathbf{v}_{1}\right)=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array}{l}3 \alpha+2 \beta=4 \\ \alpha+\beta=1\end{array} \Longleftrightarrow\left\{\begin{array}{l}\alpha=2 \\ \beta=-1\end{array}\right.\right.$
Thus $N=\left(\begin{array}{rr}2 & 1 \\ -1 & 0\end{array}\right)$.

