MATH 311-504 Topics in Applied Mathematics Lecture 2-9: Basis and dimension (continued). Matrix of a linear transformation.

Basis and dimension

Definition. Let V be a vector space. A linearly independent spanning set for V is called a **basis**.

Theorem Any vector space V has a basis. If V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The **dimension** of a vector space V, denoted dim V, is the number of elements in any of its bases.

Examples. • dim $\mathbb{R}^n = n$

• $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices dim $\mathcal{M}_{m,n}(\mathbb{R}) = mn$

• \mathcal{P}_n : polynomials of degree at most ndim $\mathcal{P}_n = n + 1$

• $\mathcal{P}:$ the space of all polynomials $\dim \mathcal{P} = \infty$

•
$$\{\mathbf{0}\}$$
: the trivial vector space dim $\{\mathbf{0}\} = 0$

Bases for \mathbb{R}^n

Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ be vectors in \mathbb{R}^n .

Theorem 1 If m < n then the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ do not span \mathbb{R}^n .

Theorem 2 If m > n then the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ are linearly dependent.

Theorem 3 If m = n then the following conditions are equivalent:

(i) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for \mathbb{R}^n ; (ii) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a spanning set for \mathbb{R}^n ; (iii) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set. **Theorem** Let S be a subset of a vector space V. Then the following conditions are equivalent:

- (i) S is a linearly independent spanning set for V, i.e., a basis;
- (ii) S is a minimal spanning set for V;
- (iii) S is a maximal linearly independent subset of V.

"Minimal spanning set" means "remove any element from this set, and it is no longer a spanning set".

"Maximal linearly independent subset" means "add any element of V to this set, and it will become linearly dependent".

How to find a basis?

Theorem Let V be a vector space. Then
(i) any spanning set for V can be reduced to a minimal spanning set;
(ii) any linearly independent subset of V can be

extended to a maximal linearly independent set.

That is, any spanning set contains a basis, while any linearly independent set is contained in a basis.

Approach 1. Get a spanning set for the vector space, then reduce this set to a basis.

Approach 2. Build a maximal linearly independent set adding one vector at a time.

Example.
$$f : \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(\mathbf{x}) = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \end{pmatrix} \mathbf{x}$.

Find the dimension of the image of f.

The image of f is spanned by columns of the matrix: $\mathbf{v}_1 = (1, 2)$, $\mathbf{v}_2 = (1, 1)$, and $\mathbf{v}_3 = (-1, 0)$. Observe that $\mathbf{v}_3 = \mathbf{v}_1 - 2\mathbf{v}_2$. It follows that Im f is spanned by vectors \mathbf{v}_1 and \mathbf{v}_2 alone. Clearly, \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. Hence $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for Im f and dim Im f = 2.

Alternatively, since \mathbf{v}_1 and \mathbf{v}_2 are linearly independent, they constitute a basis for \mathbb{R}^2 . It follows that $\text{Im } f = \mathbb{R}^2$ and dim Im f = 2. Example. $f : \mathbb{R}^3 \to \mathbb{R}^2$, $f(\mathbf{x}) = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \end{pmatrix} \mathbf{x}$.

Find the dimension of the null-space of f.

The null-space of f is the solution set of the system $\begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \end{pmatrix} \mathbf{x} = \mathbf{0}.$

To solve the system, we convert the matrix to reduced form:

 $\begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}$ Hence $(x, y, z) \in \operatorname{Null} f$ if x + z = y - 2z = 0. General solution: $(x, y, z) = (-t, 2t, t), t \in \mathbb{R}$. Thus Null f is the line t(-1, 2, 1) and dim Null f = 1. *Example.* $L : \mathcal{P}_4 \to \mathcal{P}_4$, (Lp)(x) = p(x) + p(-x). Find the dimensions of Im L and Null L.

 $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$ $\implies (Lp)(x) = 2a_0 + 2a_2x^2 + 2a_4x^4.$ Since $\{1, x, x^2, x^3, x^4\}$ is a basis for \mathcal{P}_4 , the image of L is spanned by polynomials $L1, Lx, Lx^2, Lx^3, Lx^4$. L1 = 2, $Lx^2 = 2x^2$, $Lx^4 = 2x^4$, $Lx = Lx^3 = 0$. Hence Im L is spanned by $1, x^2, x^4$. Clearly, $1, x^2, x^4$ are linearly independent so that they form a basis for $\operatorname{Im} L$ and dim $\operatorname{Im} L = 3$.

The null-space of *L* consists of polynomials $a_1x + a_3x^3$. That is, it is spanned by *x* and x^3 . Thus $\{x, x^3\}$ is a basis for Null *L* and dim Null *L* = 2.

Basis and coordinates

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

 $\mathbf{v} = x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_n\mathbf{v}_n,$

where $x_i \in \mathbb{R}$. The coefficients x_1, x_2, \ldots, x_n are called the **coordinates** of **v** with respect to the ordered basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

The mapping

vector $\mathbf{v} \mapsto its$ coordinates (x_1, x_2, \ldots, x_n)

provides a one-to-one correspondence between V and \mathbb{R}^n . Besides, this mapping is linear.

Matrix of a linear mapping

Let V, W be vector spaces and $f : V \to W$ be a linear map. Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be a basis for V and $g_1 : V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis. Let $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m$ be a basis for W and $g_2 : W \to \mathbb{R}^m$ be

the coordinate mapping corresponding to this basis.

The composition $g_2 \circ f \circ g_1^{-1}$ is a linear mapping of \mathbb{R}^n to \mathbb{R}^m . It is represented as $\mathbf{v} \mapsto A\mathbf{v}$, where A is an $m \times n$ matrix.

A is called the **matrix of** f with respect to bases $\mathbf{v}_1, \ldots, \mathbf{v}_n$ and $\mathbf{w}_1, \ldots, \mathbf{w}_m$. Columns of A are coordinates of vectors $f(\mathbf{v}_1), \ldots, f(\mathbf{v}_n)$ with respect to the basis $\mathbf{w}_1, \ldots, \mathbf{w}_m$. *Examples.* • $D: \mathcal{P}_2 \to \mathcal{P}_1$, (Dp)(x) = p'(x). Let A_D be the matrix of D with respect to the bases $1, x, x^2$ and 1, x. Columns of A_D are coordinates of polynomials D1, Dx, Dx^2 w.r.t. the basis 1, x.

$$D1 = 0, Dx = 1, Dx^2 = 2x \implies A_D = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

• $L: \mathcal{P}_2 \to \mathcal{P}_2$, (Lp)(x) = p(x+1). Let A_L be the matrix of L w.r.t. the basis $1, x, x^2$. $L1 = 1, Lx = 1 + x, Lx^2 = (x+1)^2 = 1 + 2x + x^2$. $\implies A_L = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ **Problem.** Consider a linear operator $L : \mathbb{R}^2 \to \mathbb{R}^2$,

$$L\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}.$$

Find the matrix of L with respect to the basis $\mathbf{v}_1 = (3, 1)$, $\mathbf{v}_2 = (2, 1)$.

Let *N* be the desired matrix. Columns of *N* are coordinates of the vectors $L(\mathbf{v}_1)$ and $L(\mathbf{v}_2)$ w.r.t. the basis $\mathbf{v}_1, \mathbf{v}_2$.

$$\begin{split} \mathcal{L}(\mathbf{v}_1) &= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \quad \mathcal{L}(\mathbf{v}_2) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}. \\ \text{Clearly,} \quad \mathcal{L}(\mathbf{v}_2) &= \mathbf{v}_1 = 1\mathbf{v}_1 + 0\mathbf{v}_2. \end{split}$$

$$L(\mathbf{v}_1) = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \iff \begin{cases} 3\alpha + 2\beta = 4\\ \alpha + \beta = 1 \end{cases} \iff \begin{cases} \alpha = 2\\ \beta = -1 \end{cases}$$

Thus $N = \begin{pmatrix} 2 & 1\\ -1 & 0 \end{pmatrix}$.