Math 311-504 Topics in Applied Mathematics Lecture 2: Orthogonal projection. Lines and planes.

Vectors

n-dimensional vector is an element of \mathbb{R}^n , that is, an ordered *n*-tuple (x_1, x_2, \ldots, x_n) of real numbers.

Elements of \mathbb{R}^n are regarded either as vectors or as points. If $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ are points, then the directed segment $\overrightarrow{\mathbf{ab}}$ represents the vector $\mathbf{b} - \mathbf{a}$. In particular, each point $\mathbf{a} \in \mathbb{R}^n$ has the same coordinates as its *position vector* $\overrightarrow{\mathbf{0a}}$.

 $a = (2, 1), \quad b = (-3, 2), \quad b - a = (-5, 1)$

Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ be *n*-dimensional vectors.

Addition: $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$ Scalar multiplication: $r\mathbf{x} = (rx_1, rx_2, \dots, rx_n).$

Length: $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$. Dot product: $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$. Angle: $\angle(\mathbf{x}, \mathbf{y}) = \arccos \frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}| |\mathbf{y}|}$. **Problem.** Find the angle θ between vectors $\mathbf{x} = (2, -1)$ and $\mathbf{y} = (3, 1)$.

$$\mathbf{x} \cdot \mathbf{y} = 5$$
, $|\mathbf{x}| = \sqrt{5}$, $|\mathbf{y}| = \sqrt{10}$.
 $\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}| |\mathbf{y}|} = \frac{5}{\sqrt{5}\sqrt{10}} = \frac{1}{\sqrt{2}} \implies \theta = 45^{\circ}$

Problem. Find the angle ϕ between vectors $\mathbf{v} = (-2, 1, 3)$ and $\mathbf{w} = (4, 5, 1)$.

 $\mathbf{v}\cdot\mathbf{w}=\mathbf{0} \implies \mathbf{v}\perp\mathbf{w} \implies \phi=\mathbf{90^{o}}$

Orthogonal projection

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, with $\mathbf{y} \neq \mathbf{0}$. Then there exists a unique decomposition $\mathbf{x} = \mathbf{p} + \mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y} .

 $\mathbf{p} =$ orthogonal projection of \mathbf{x} onto \mathbf{y}

Orthogonal projection

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, with $\mathbf{y} \neq \mathbf{0}$. Then there exists a unique decomposition $\mathbf{x} = \mathbf{p} + \mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y} . Namely, $\mathbf{p} = \alpha \mathbf{u}$, where \mathbf{u} is the unit vector of the same direction as \mathbf{y} , and $\alpha = \mathbf{x} \cdot \mathbf{u}$. Indeed, $\mathbf{p} \cdot \mathbf{u} = (\alpha \mathbf{u}) \cdot \mathbf{u} = \alpha (\mathbf{u} \cdot \mathbf{u}) = \alpha |\mathbf{u}|^2 = \alpha = \mathbf{x} \cdot \mathbf{u}$.

Hence $\mathbf{o} \cdot \mathbf{u} = (\alpha \mathbf{u}) \cdot \mathbf{u} = \alpha (\mathbf{u} \cdot \mathbf{u}) = \alpha |\mathbf{u}|^2 = \alpha = \mathbf{x} \cdot \mathbf{u}$. Hence $\mathbf{o} \cdot \mathbf{u} = (\mathbf{x} - \mathbf{p}) \cdot \mathbf{u} = \mathbf{x} \cdot \mathbf{u} - \mathbf{p} \cdot \mathbf{u} = 0 \implies \mathbf{o} \perp \mathbf{u}$ $\implies \mathbf{o} \perp \mathbf{y}$.

p is called the **vector projection** of **x** onto **y**, $\alpha = \pm |\mathbf{p}|$ is called the **scalar projection** of **x** onto **y**.

$$\mathbf{u} = \frac{\mathbf{y}}{|\mathbf{y}|}, \qquad \alpha = \frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{y}|}, \qquad \mathbf{p} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}.$$

Lines

A line is specified by one point and a direction. The direction is specified by a nonzero vector. **Definition.** A *line* is a set of all points $t\mathbf{u} + \mathbf{v}$, where $\mathbf{u} \neq \mathbf{0}$ and \mathbf{v} are fixed vectors while t ranges over all real numbers.

Here **v** is a point on the line, **u** is the direction. $t\mathbf{u} + \mathbf{v}$ is a *parametric representation* of the line.

Example.
$$t(1,3,1) + (-2,0,3)$$
 is a line in \mathbb{R}^3 .
If (x, y, z) is a point on the line, then

$$\begin{cases}
x = t - 2, \\
y = 3t, \\
z = t + 3
\end{cases}$$
for some $t \in \mathbb{R}$.

Line $t\mathbf{u} + \mathbf{v}$

Problem. Let ℓ denote a line $t\mathbf{u} + \mathbf{v}$. (i) Find the distance from a point \mathbf{x} to ℓ . (ii) Find the point on the line ℓ that is closest to \mathbf{x} .

 $\mathbf{p} = \text{orthogonal projection of } \mathbf{x} - \mathbf{v} \text{ onto } \mathbf{u}.$ The distance equals $|\mathbf{o}|$. The closest point is $\mathbf{v} + \mathbf{p}$. Alternatively, a line is specified by two distinct points **a** and **b**. Then the vector $\mathbf{b} - \mathbf{a}$ is parallel to the line, hence $t(\mathbf{b} - \mathbf{a}) + \mathbf{a}$ is a parametric representation.

Let $\mathbf{x} = t(\mathbf{b} - \mathbf{a}) + \mathbf{a}$. Then \mathbf{x} lies between \mathbf{a} and \mathbf{b} if 0 < t < 1. If t > 1 then \mathbf{b} lies between \mathbf{a} and \mathbf{x} . If t < 0 then \mathbf{a} lies between \mathbf{x} and \mathbf{b} .

Definition. The *segment* joining points **a** and **b** is the set of all points $t(\mathbf{b} - \mathbf{a}) + \mathbf{a}$, where $0 \le t \le 1$. Note that $t(\mathbf{b} - \mathbf{a}) + \mathbf{a} = (1 - t)\mathbf{a} + t\mathbf{b}$.

Line through \boldsymbol{a} and \boldsymbol{b}

In \mathbb{R}^2 , a line can also be specified by one point and an orthogonal direction.

Line through \mathbf{x}_0 orthogonal to \mathbf{p} \mathbf{x} is on line $\iff \mathbf{p} \cdot (\mathbf{x} - \mathbf{x}_0) = 0$ **Proposition** Let $\ell \subset \mathbb{R}^2$ be the line passing through a point \mathbf{x}_0 and orthogonal to a vector $\mathbf{p} \neq \mathbf{0}$. Then a point $\mathbf{x} \in \mathbb{R}^2$ is on ℓ if and only if $\mathbf{p} \cdot (\mathbf{x} - \mathbf{x}_0) = \mathbf{0}$.

Suppose $\mathbf{p} = (a, b)$, $\mathbf{x} = (x, y)$, and $\mathbf{x}_0 = (x_0, y_0)$. Then the equation of the line ℓ becomes

$$a(x-x_0)+b(y-y_0)=0$$

or

$$ax + by = c$$
, where $c = ax_0 + by_0$.

Distance to a line in a plane

Proposition Suppose ℓ is a line in \mathbb{R}^2 given by the equation ax + by = c. Then

(i) the distance from a point (x_1, y_1) to the line ℓ equals

$$rac{|ax_1+by_1-c|}{\sqrt{a^2+b^2}};$$

(ii) two points (x_1, y_1) and (x_2, y_2) are on the same side of ℓ if and only if the numbers $ax_1 + by_1 - c$ and $ax_2 + by_2 - c$ have the same sign.

Distance from \mathbf{x}_1 to ℓ is equal to $|\mathbf{x}_1 - \mathbf{x}_0|$ Vector $\mathbf{x}_1 - \mathbf{x}_0$ is parallel to \mathbf{p}

Proof of (i)

The vector $\mathbf{p} = (a, b)$ is orthogonal to the line ℓ . The equation ax + by = c can be rewritten as $\mathbf{p} \cdot \mathbf{x} = c$, where $\mathbf{x} = (x, y)$.

Given a point $\mathbf{x}_1 = (x_1, y_1)$, let \mathbf{x}_0 be its orthogonal projection on ℓ . Then the distance $dist(\mathbf{x}_1, \ell)$ is equal to $|\mathbf{x}_1 - \mathbf{x}_0|$.

Since vectors $\mathbf{x}_1 - \mathbf{x}_0$ and \mathbf{p} are parallel, $\mathbf{p} \cdot (\mathbf{x}_1 - \mathbf{x}_0) = \pm |\mathbf{p}| |\mathbf{x}_1 - \mathbf{x}_0|.$ $dist = \frac{|\mathbf{p} \cdot (\mathbf{x}_1 - \mathbf{x}_0)|}{|\mathbf{p}|} = \frac{|\mathbf{p} \cdot \mathbf{x}_1 - \mathbf{p} \cdot \mathbf{x}_0|}{|\mathbf{p}|} = \frac{|ax_1 + by_1 - c|}{\sqrt{a^2 + b^2}}$

Planes

A plane is specified by two intersecting lines.

Definition. A *plane* is a set of all points $t\mathbf{u} + s\mathbf{w} + \mathbf{v}$, where \mathbf{u} , \mathbf{w} , and \mathbf{v} are fixed vectors such that \mathbf{u} and \mathbf{w} are not parallel, while t and s range over all real numbers.

The plane $t\mathbf{u} + s\mathbf{w} + \mathbf{v}$ contains lines $t\mathbf{u} + \mathbf{v}$ and $s\mathbf{w} + \mathbf{v}$ that intersect at the point \mathbf{v} .

 $t\mathbf{u} + s\mathbf{w} + \mathbf{v}$ is a parametric representation.

Planes

Alternatively, a plane is specified by a line $t\mathbf{u} + \mathbf{v}$ and a point **a** outside it. Then a parametric representation is $t\mathbf{u} + s(\mathbf{a} - \mathbf{v}) + \mathbf{v}$.

Alternatively, a plane is specified by three points **a**, **b**, and **c** that are not on the same line. Then a parametric representation is

$$egin{array}{ll} t(\mathbf{b}-\mathbf{a})+s(\mathbf{c}-\mathbf{a})+\mathbf{a}\ &=(1-t-s)\mathbf{a}+t\mathbf{b}+s\mathbf{c} \end{array}$$

In \mathbb{R}^3 , a plane can also be specified by one point \mathbf{x}_0 and an orthogonal direction $\mathbf{p} \neq \mathbf{0}$. Then the plane is given by the equation $\mathbf{p} \cdot (\mathbf{x} - \mathbf{x}_0) = 0$.

Let
$$\mathbf{p} = (a, b, c)$$
, $\mathbf{x} = (x, y, z)$, and $\mathbf{x}_0 = (x_0, y_0, z_0)$.
Then the equation of the plane becomes

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

or

$$ax + by + cz = d$$
, where $d = ax_0 + by_0 + xz_0$.

Distance to a plane in space

Proposition Suppose Π is a plane in \mathbb{R}^3 given by the equation ax + by + cz = d. Then

(i) the distance from a point (x_1, y_1, z_1) to the plane Π equals

$$rac{|ax_1+by_1+cz_1-d|}{\sqrt{a^2+b^2+c^2}};$$

(ii) two points (x_1, y_1, z_1) and (x_2, y_2, z_2) are on the same side of Π if and only if the numbers $ax_1 + by_1 + cz_1 - d$ and $ax_2 + by_2 + cz_2 - d$ have the same sign.