Math 311-504
 Topics in Applied Mathematics

Lecture 2:
 Orthogonal projection.
 Lines and planes.

Vectors

n-dimensional vector is an element of \mathbb{R}^{n}, that is, an ordered n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of real numbers.

Elements of \mathbb{R}^{n} are regarded either as vectors or as points. If $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$ are points, then the directed segment $\overrightarrow{\mathbf{a b}}$ represents the vector $\mathbf{b}-\mathbf{a}$.
In particular, each point $\mathbf{a} \in \mathbb{R}^{n}$ has the same coordinates as its position vector $\overrightarrow{\mathbf{0 a}}$.

$$
\mathbf{a}=(2,1), \quad \mathbf{b}=(-3,2), \quad \mathbf{b}-\mathbf{a}=(-5,1)
$$

Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be n-dimensional vectors.

Addition: $\quad \mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)$.
Scalar multiplication: $r \mathbf{x}=\left(r x_{1}, r x_{2}, \ldots, r x_{n}\right)$.
Length: $|\mathbf{x}|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$.
Dot product: $\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdot+x_{n} y_{n}$.
Angle: $\angle(\mathbf{x}, \mathbf{y})=\arccos \frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}||\mathbf{y}|}$.

Problem. Find the angle θ between vectors $\mathbf{x}=(2,-1)$ and $\mathbf{y}=(3,1)$.
$\mathbf{x} \cdot \mathbf{y}=5, \quad|\mathbf{x}|=\sqrt{5}, \quad|\mathbf{y}|=\sqrt{10}$.
$\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}||\mathbf{y}|}=\frac{5}{\sqrt{5} \sqrt{10}}=\frac{1}{\sqrt{2}} \Longrightarrow \theta=45^{\circ}$

Problem. Find the angle ϕ between vectors
$\mathbf{v}=(-2,1,3)$ and $\mathbf{w}=(4,5,1)$.
$\mathbf{v} \cdot \mathbf{w}=0 \Longrightarrow \mathbf{v} \perp \mathbf{w} \Longrightarrow \phi=90^{\circ}$

Orthogonal projection

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, with $\mathbf{y} \neq \mathbf{0}$.
Then there exists a unique decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y}.

$\mathbf{p}=$ orthogonal projection of \mathbf{x} onto \mathbf{y}

Orthogonal projection

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, with $\mathbf{y} \neq \mathbf{0}$.
Then there exists a unique decomposition $\mathbf{x}=\mathbf{p}+\mathbf{0}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y}.
Namely, $\mathbf{p}=\alpha \mathbf{u}$, where \mathbf{u} is the unit vector of the same direction as \mathbf{y}, and $\alpha=\mathbf{x} \cdot \mathbf{u}$. Indeed, $\mathbf{p} \cdot \mathbf{u}=(\alpha \mathbf{u}) \cdot \mathbf{u}=\alpha(\mathbf{u} \cdot \mathbf{u})=\alpha|\mathbf{u}|^{2}=\alpha=\mathbf{x} \cdot \mathbf{u}$. Hence $\mathbf{o} \cdot \mathbf{u}=(\mathbf{x}-\mathbf{p}) \cdot \mathbf{u}=\mathbf{x} \cdot \mathbf{u}-\mathbf{p} \cdot \mathbf{u}=0 \Longrightarrow \mathbf{o} \perp \mathbf{u}$
$\Longrightarrow \mathbf{o} \perp \mathbf{y}$.
\mathbf{p} is called the vector projection of \mathbf{x} onto \mathbf{y}, $\alpha= \pm|\mathbf{p}|$ is called the scalar projection of \mathbf{x} onto \mathbf{y}.

$$
\mathbf{u}=\frac{\mathbf{y}}{|\mathbf{y}|}, \quad \alpha=\frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{y}|}, \quad \mathbf{p}=\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}
$$

Lines

A line is specified by one point and a direction. The direction is specified by a nonzero vector. Definition. A line is a set of all points $t \mathbf{u}+\mathbf{v}$, where $\mathbf{u} \neq \mathbf{0}$ and \mathbf{v} are fixed vectors while t ranges over all real numbers.
Here \mathbf{v} is a point on the line, \mathbf{u} is the direction. $t \mathbf{u}+\mathbf{v}$ is a parametric representation of the line.
Example. $\quad t(1,3,1)+(-2,0,3)$ is a line in \mathbb{R}^{3}.
If (x, y, z) is a point on the line, then
$\left\{\begin{array}{l}x=t-2, \\ y=3 t, \\ z=t+3\end{array}\right.$
for some $t \in \mathbb{R}$.

Line $t \mathbf{u}+\mathbf{v}$

Problem. Let ℓ denote a line $t \mathbf{u}+\mathbf{v}$.
(i) Find the distance from a point \mathbf{x} to ℓ.
(ii) Find the point on the line ℓ that is closest to \mathbf{x}.

$\mathbf{p}=$ orthogonal projection of $\mathbf{x}-\mathbf{v}$ onto \mathbf{u}.
The distance equals $|\mathbf{o}|$. The closest point is $\mathbf{v}+\mathbf{p}$.

Alternatively, a line is specified by two distinct points \mathbf{a} and \mathbf{b}. Then the vector $\mathbf{b}-\mathbf{a}$ is parallel to the line, hence $t(\mathbf{b}-\mathbf{a})+\mathbf{a}$ is a parametric representation.

Let $\mathbf{x}=t(\mathbf{b}-\mathbf{a})+\mathbf{a}$.
Then \mathbf{x} lies between \mathbf{a} and \mathbf{b} if $0<t<1$.
If $t>1$ then \mathbf{b} lies between \mathbf{a} and \mathbf{x}. If $t<0$ then \mathbf{a} lies between \mathbf{x} and \mathbf{b}.

Definition. The segment joining points \mathbf{a} and \mathbf{b} is the set of all points $t(\mathbf{b}-\mathbf{a})+\mathbf{a}$, where $0 \leq t \leq 1$.
Note that $t(\mathbf{b}-\mathbf{a})+\mathbf{a}=(1-t) \mathbf{a}+t \mathbf{b}$.

In \mathbb{R}^{2}, a line can also be specified by one point and an orthogonal direction.

Line through \mathbf{x}_{0} orthogonal to \mathbf{p} \mathbf{x} is on line $\Longleftrightarrow \mathbf{p} \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)=0$

Proposition Let $\ell \subset \mathbb{R}^{2}$ be the line passing through a point \mathbf{x}_{0} and orthogonal to a vector $\mathbf{p} \neq \mathbf{0}$. Then a point $\mathbf{x} \in \mathbb{R}^{2}$ is on ℓ if and only if $\mathbf{p} \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)=0$.

Suppose $\mathbf{p}=(a, b), \mathbf{x}=(x, y)$, and $\mathbf{x}_{0}=\left(x_{0}, y_{0}\right)$. Then the equation of the line ℓ becomes

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0
$$

or

$$
a x+b y=c, \text { where } c=a x_{0}+b y_{0} .
$$

Distance to a line in a plane

Proposition Suppose ℓ is a line in \mathbb{R}^{2} given by the equation $a x+b y=c$. Then
(i) the distance from a point $\left(x_{1}, y_{1}\right)$ to the line ℓ equals

$$
\frac{\left|a x_{1}+b y_{1}-c\right|}{\sqrt{a^{2}+b^{2}}}
$$

(ii) two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are on the same side of ℓ if and only if the numbers $a x_{1}+b y_{1}-c$ and $a x_{2}+b y_{2}-c$ have the same sign.

Distance from \mathbf{x}_{1} to ℓ is equal to $\left|\mathbf{x}_{1}-\mathbf{x}_{0}\right|$ Vector $\mathbf{x}_{1}-\mathbf{x}_{0}$ is parallel to \mathbf{p}

Proof of (i)

The vector $\mathbf{p}=(a, b)$ is orthogonal to the line ℓ.
The equation $a x+b y=c$ can be rewritten as
$\mathbf{p} \cdot \mathbf{x}=c$, where $\mathbf{x}=(x, y)$.
Given a point $\mathbf{x}_{1}=\left(x_{1}, y_{1}\right)$, let \mathbf{x}_{0} be its orthogonal projection on ℓ. Then the distance $\operatorname{dist}\left(\mathbf{x}_{1}, \ell\right)$ is equal to $\left|\mathbf{x}_{1}-\mathbf{x}_{0}\right|$.

Since vectors $\mathbf{x}_{1}-\mathbf{x}_{0}$ and \mathbf{p} are parallel,

$$
\mathbf{p} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{0}\right)= \pm|\mathbf{p}|\left|\mathbf{x}_{1}-\mathbf{x}_{0}\right| .
$$

$$
\operatorname{dist}=\frac{\left|\mathbf{p} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{0}\right)\right|}{|\mathbf{p}|}=\frac{\left|\mathbf{p} \cdot \mathbf{x}_{1}-\mathbf{p} \cdot \mathbf{x}_{0}\right|}{|\mathbf{p}|}=\frac{\left|a x_{1}+b y_{1}-c\right|}{\sqrt{a^{2}+b^{2}}}
$$

Planes

A plane is specified by two intersecting lines.
Definition. A plane is a set of all points $t \mathbf{u}+\boldsymbol{s w}+\mathbf{v}$, where \mathbf{u}, \mathbf{w}, and \mathbf{v} are fixed vectors such that \mathbf{u} and \mathbf{w} are not parallel, while t and s range over all real numbers.

The plane $t \mathbf{u}+\boldsymbol{s w}+\mathbf{v}$ contains lines $t \mathbf{u}+\mathbf{v}$ and $s \mathbf{w}+\mathbf{v}$ that intersect at the point \mathbf{v}.
$t \mathbf{u}+\boldsymbol{s w}+\mathbf{v}$ is a parametric representation.

Planes

Alternatively, a plane is specified by a line $t \mathbf{u}+\mathbf{v}$ and a point a outside it. Then a parametric representation is $t \mathbf{u}+s(\mathbf{a}-\mathbf{v})+\mathbf{v}$.

Alternatively, a plane is specified by three points a, \mathbf{b}, and \mathbf{c} that are not on the same line. Then a parametric representation is

$$
\begin{aligned}
& t(\mathbf{b}-\mathbf{a})+s(\mathbf{c}-\mathbf{a})+\mathbf{a} \\
& \quad=(1-t-s) \mathbf{a}+t \mathbf{b}+s \mathbf{c}
\end{aligned}
$$

In \mathbb{R}^{3}, a plane can also be specified by one point \mathbf{x}_{0} and an orthogonal direction $\mathbf{p} \neq \mathbf{0}$. Then the plane is given by the equation $\mathbf{p} \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)=0$.

Let $\mathbf{p}=(a, b, c), \mathbf{x}=(x, y, z)$, and $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$.
Then the equation of the plane becomes

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

or
$a x+b y+c z=d$, where $d=a x_{0}+b y_{0}+x z_{0}$.

Distance to a plane in space

Proposition Suppose Π is a plane in \mathbb{R}^{3} given by the equation $a x+b y+c z=d$. Then
(i) the distance from a point $\left(x_{1}, y_{1}, z_{1}\right)$ to the plane Π equals

$$
\frac{\left|a x_{1}+b y_{1}+c z_{1}-d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

(ii) two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ are on the same side of Π if and only if the numbers $a x_{1}+b y_{1}+c z_{1}-d$ and $a x_{2}+b y_{2}+c z_{2}-d$ have the same sign.

