MATH 311-504
 Topics in Applied Mathematics

Lecture 3-12:
Fourier series (continued).

Fourier series

Definition. Fourier series is a series of the form

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

To each integrable function $F:[-\pi, \pi] \rightarrow \mathbb{R}$ we associate a Fourier series such that

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(x) d x
$$

and for $n \geq 1$,

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cos n x d x \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \sin n x d x
\end{aligned}
$$

Convergence in the mean

Theorem Fourier series of a continuous function on $[-\pi, \pi]$ converges to this function with respect to the distance
$\operatorname{dist}(f, g)=\|f-g\|=\left(\int_{-\pi}^{\pi}|f(x)-g(x)|^{2} d x\right)^{1 / 2}$.

However such convergence in the mean does not necessarily imply pointwise convergence.

Questions

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

- When does a Fourier series converge everywhere? When does it converge uniformly?
- If a Fourier series does not converge everywhere, then what is the set of points where it converges?
- If a Fourier series is associated to a function, then how do convergence properties depend on the function?
- If a Fourier series is associated to a function, then how does the sum of the series relate to the function?

Answers

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

- Complete answers are never easy (and hardly possible) when dealing with the Fourier series!
- A Fourier series converges everywhere provided that $a_{n} \rightarrow 0$ and $b_{n} \rightarrow 0$ fast enough (however fast decay is not necessary).
- The Fourier series of a continuous function converges to this function almost everywhere.
- The Fourier series associated to a function converges everywhere provided that the function is piecewise smooth (condition may be relaxed).

Jump discontinuity
 Piecewise continuous $=$ finitely many jump discontinuities

Piecewise smooth function
(both function and its derivative are piecewise continuous)

Continuous, but not piecewise smooth function

Pointwise convergence

Theorem Suppose $F:[-\pi, \pi] \rightarrow \mathbb{R}$ is a piecewise smooth function. Then the Fourier series of F converges everywhere.
The sum at a point $x(-\pi<x<\pi)$ is equal to $F(x)$ if F is continuous at x. Otherwise the sum is equal to

$$
\frac{F(x-)+F(x+)}{2}
$$

The sum at the points π and $-\pi$ is equal to

$$
\frac{F(\pi-)+F(-\pi+)}{2}
$$

Function and its Fourier series ($L=\pi$)

Example. Fourier series of the function $F(x)=x$.

$$
\begin{gathered}
x \sim 2 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n x}{n} \\
=2\left(\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x-\frac{1}{4} \sin 4 x+\cdots\right)
\end{gathered}
$$

The series converges to the function $F(x)$ for any $-\pi<x<\pi$.

For $x=\pi / 2$ we obtain:

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots
$$

Example. Fourier series of the function $f(x)=x^{2}$.
Proposition Fourier series of an odd function contains only sines, while Fourier series of an even function contains only cosines and a constant term.

Theorem Suppose that a function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ is continuous, piecewise smooth, and $f(-\pi)=f(\pi)$.

Then the Fourier series of f^{\prime} can be obtained via term-by-term differentiation of the Fourier series of f.

Example. Fourier series of the function $f(x)=x^{2}$.

$$
x^{2} \sim a_{0}+a_{1} \cos x+a_{2} \cos 2 x+a_{3} \cos 3 x+\cdots
$$

Term-by-term differentiation yields
$-a_{1} \sin x-2 a_{2} \sin 2 x-3 a_{3} \sin 3 x-4 a_{4} \sin 4 x-\cdots$
This should be the Fourier series of $f^{\prime}(x)=2 x$, which is
$2 x \sim 4\left(\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x-\frac{1}{4} \sin 4 x+\cdots\right)$.
Hence $a_{n}=(-1)^{n} \frac{4}{n^{2}}$ for $n \geq 1$.
It remains to find $a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\frac{\pi^{2}}{3}$.

Example. Fourier series of the function $f(x)=x^{2}$.

$$
x^{2} \sim \frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}
$$

$=\frac{\pi^{2}}{3}+4\left(-\cos x+\frac{1}{4} \cos 2 x-\frac{1}{9} \cos 3 x+\frac{1}{16} \cos 4 x-\cdots\right)$
The series converges to $f(x)$ for any $-\pi \leq x \leq \pi$.
For $x=0$ we obtain: $\frac{\pi^{2}}{12}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots$
For $x=\pi$ we obtain: $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots$

Gibbs' phenomenon

Left graph: Fourier series of $F(x)=2 x$.
Right graph: 12th partial sum of the series.
The maximal value of the nth partial sum for large n is about 17.9% higher than the maximal value of the series. This is the so-called Gibbs' overshoot.

