MATH 311-504
 Topics in Applied Mathematics

Lecture 3-13:

Fourier's solution of the heat equation. Review for the final exam.

Heat equation

Heat conduction in a rod is described by one-dimensional heat equation:

$$
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+Q
$$

$K_{0}=K_{0}(x), c=c(x), \rho=\rho(x), Q=Q(x, t)$.
Assuming K_{0}, c, ρ are constant (uniform rod) and $Q=0$ (no heat sources), we obtain

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

where $k=K_{0}(c \rho)^{-1}$ is called the thermal diffusivity.

Initial and boundary conditions

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad x_{1} \leq x \leq x_{2}
$$

Initial condition: $u(x, 0)=f(x), x_{1} \leq x \leq x_{2}$.
Examples of boundary conditions:

- $u\left(x_{1}, t\right)=u_{2}\left(x_{2}, t\right)=0$.
(constant temperature at the ends)
- $\frac{\partial u}{\partial x}\left(x_{1}, t\right)=\frac{\partial u}{\partial x}\left(x_{2}, t\right)=0$.
(insulated ends)
- $u\left(x_{1}, t\right)=u\left(x_{2}, t\right), \quad \frac{\partial u}{\partial x}\left(x_{1}, t\right)=\frac{\partial u}{\partial x}\left(x_{2}, t\right)$.
(periodic boundary conditions)

Heat conduction in a thin circular ring

Initial-boundary value problem:

$$
\begin{gathered}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad u(x, 0)=f(x) \quad(-\pi \leq x \leq \pi) \\
u(-\pi, t)=u(\pi, t), \quad \frac{\partial u}{\partial x}(-\pi, t)=\frac{\partial u}{\partial x}(\pi, t)
\end{gathered}
$$

For any $t \geq 0$ the function $u(x, t)$ can be expanded into Fourier series:
$u(x, t)=A_{0}(t)+\sum_{n=1}^{\infty}\left(A_{n}(t) \cos n x+B_{n}(t) \sin n x\right)$.
Let's assume that the series can be differentiated term-by-term. Then

$$
\begin{aligned}
& \frac{\partial u}{\partial t}(x, t)=A_{0}^{\prime}(t)+\sum_{n=1}^{\infty}\left(A_{n}^{\prime}(t) \cos n x+B_{n}^{\prime}(t) \sin n x\right), \\
& \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\sum_{n=1}^{\infty}\left(-n^{2}\right)\left(A_{n}(t) \cos n x+B_{n}(t) \sin n x\right) .
\end{aligned}
$$

It follows that $A_{0}^{\prime}=0, A_{n}^{\prime}=-n^{2} k A_{n}$ and $B_{n}^{\prime}=-n^{2} k B_{n}, n \geq 1$.

Solving these ODEs, we obtain
$A_{0}(t)=a_{0}, A_{n}(t)=a_{n} e^{-n^{2} k t}, B_{n}(t)=b_{n} e^{-n^{2} k t}$, where $a_{i}, b_{j} \in \mathbb{R}$. Thus

$$
u(x, t)=a_{0}+\sum_{n=1}^{\infty} e^{-n^{2} k t}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

Observe that a_{n}, b_{n} are Fourier coefficients of the initial data $f(x)$.

How do we solve the initial-boundary value problem?

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad u(x, 0)=f(x) \quad(-\pi \leq x \leq \pi)
$$

$$
u(-\pi, t)=u(\pi, t), \quad \frac{\partial u}{\partial x}(-\pi, t)=\frac{\partial u}{\partial x}(\pi, t) .
$$

- Expand the function f into Fourier series

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

- Write the solution:

$$
u(x, t)=a_{0}+\sum_{n=1}^{\infty} e^{-n^{2} k t}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

J. Fourier, The Analytical Theory of Heat (written in 1807, published in 1822)

Why does it work?

Let V denote the vector space of 2π-periodic smooth functions on the real line.
Consider a linear operator $L: V \rightarrow V$ given by $L(F)=k F^{\prime \prime}$. Then the heat equation can be represented as a linear ODE on the space V :

$$
\frac{d F}{d t}=L(F)
$$

It turns out that functions

$$
1, \cos x, \cos 2 x, \ldots, \sin x, \sin 2 x, \ldots
$$

are eigenfunctions of the operator L.

Topics for the final exam: Part I

- n-dimensional vectors, dot product, cross product.
- Elementary analytic geometry: lines and planes.
- Systems of linear equations: elementary operations, echelon and reduced form.
- Matrix algebra, inverse matrices.
- Determinants: explicit formulas for 2-by-2 and 3 -by- 3 matrices, row and column expansions, elementary row and column operations.

Topics for the final exam: Part II

- Vector spaces (vectors, matrices, polynomials, functional spaces).
- Bases and dimension.
- Linear mappings/transformations/operators.
- Subspaces. Image and null-space of a linear map.
- Matrix of a linear map relative to a basis.

Change of coordinates.

- Eigenvalues and eigenvectors. Characteristic polynomial of a matrix. Bases of eigenvectors (diagonalization).

Topics for the final exam: Part III

- Norms. Inner products.
- Orthogonal and orthonormal bases. The Gram-Schmidt orthogonalization process.
- Orthogonal polynomials.
- Orthonormal bases of eigenvectors. Symmetric matrices.
- Orthogonal matrices. Rotations in space.

Problem. Let $f_{1}, f_{2}, f_{3}, \ldots$ be the Fibonacci numbers defined by $f_{1}=f_{2}=1, f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 3$. Find $\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}$.

For any integer $n \geq 1$ let $\mathbf{v}_{n}=\left(f_{n+1}, f_{n}\right)$. Then

$$
\binom{f_{n+2}}{f_{n+1}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{f_{n+1}}{f_{n}}
$$

That is, $\mathbf{v}_{n+1}=A \mathbf{v}_{n}$, where $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. In particular, $\mathbf{v}_{2}=A \mathbf{v}_{1}, \mathbf{v}_{3}=A \mathbf{v}_{2}=A^{2} \mathbf{v}_{1}$, $\mathbf{v}_{4}=A \mathbf{v}_{3}=A^{3} \mathbf{v}_{1}$. In general, $\mathbf{v}_{n}=A^{n-1} \mathbf{v}_{1}$.

Characteristic equation of the matrix A :

$$
\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & -\lambda
\end{array}\right|=0 \Longleftrightarrow \lambda^{2}-\lambda-1=0 .
$$

Eigenvalues: $\quad \lambda_{1}=\frac{1+\sqrt{5}}{2}, \quad \lambda_{2}=\frac{1-\sqrt{5}}{2}$.
Let $\mathbf{w}_{1}=\left(x_{1}, y_{1}\right)$ and $\mathbf{w}_{2}=\left(x_{2}, y_{2}\right)$ be eigenvectors of A associated with the eigenvalues λ_{1} and λ_{2}.
Then $\mathbf{w}_{1}, \mathbf{w}_{2}$ is a basis for \mathbb{R}^{2}.
In particular, $\mathbf{v}_{1}=(1,1)=c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}$ for some $c_{1}, c_{2} \in \mathbb{R}$. It follows that

$$
\begin{gathered}
\mathbf{v}_{n}=A^{n-1} \mathbf{v}_{1}=A^{n-1}\left(c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}\right) \\
=c_{1} A^{n-1} \mathbf{w}_{1}+c_{2} A^{n-1} \mathbf{w}_{2}=c_{1} \lambda_{1}^{n-1} \mathbf{w}_{1}+c_{2} \lambda_{2}^{n-1} \mathbf{w}_{2}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{v}_{n} & =c_{1} \lambda_{1}^{n-1} \mathbf{w}_{1}+c_{2} \lambda_{2}^{n-1} \mathbf{w}_{2} \\
\Longrightarrow \quad f_{n} & =c_{1} \lambda_{1}^{n-1} y_{1}+c_{2} \lambda_{2}^{n-1} y_{2} .
\end{aligned}
$$

Recall that $\lambda_{1}=\frac{1+\sqrt{5}}{2}, \quad \lambda_{2}=\frac{1-\sqrt{5}}{2}$.
We have $\lambda_{1}>1$ and $-1<\lambda_{2}<0$.
Therefore

$$
\begin{gathered}
\frac{f_{n+1}}{f_{n}}=\frac{c_{1} \lambda_{1}^{n} y_{1}+c_{2} \lambda_{2}^{n} y_{2}}{c_{1} \lambda_{1}^{n-1} y_{1}+c_{2} \lambda_{2}^{n-1} y_{2}} \\
=\lambda_{1} \frac{c_{1} y_{1}+c_{2}\left(\lambda_{2} / \lambda_{1}\right)^{n} y_{2}}{c_{1} y_{1}+c_{2}\left(\lambda_{2} / \lambda_{1}\right)^{n-1} y_{2}} \rightarrow \lambda_{1} \frac{c_{1} y_{1}}{c_{1} y_{1}}=\lambda_{1}
\end{gathered}
$$

provided that $c_{1} y_{1} \neq 0$.
Thus $\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}=\lambda_{1}=\frac{1+\sqrt{5}}{2}$.

