MATH 311-504
 Topics in Applied Mathematics

Lecture 3-2:
 Complex eigenvalues and eigenvectors. Norm.

Fundamental Theorem of Algebra

 Any polynomial of degree $n \geq 1$, with complex coefficients, has exactly n roots (counting with multiplicities).Equivalently, if

$$
p(z)=a_{n} z^{n}+a_{n-1} z+\cdots+a_{1} z+a_{0}
$$

where $a_{i} \in \mathbb{C}$ and $a_{n} \neq 0$, then there exist complex numbers $z_{1}, z_{2}, \ldots, z_{n}$ such that

$$
p(z)=a_{n}\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right) .
$$

Complex eigenvalues/eigenvectors

Example. $\quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$.
$\operatorname{det}(A-\lambda I)=\lambda^{2}+1=(\lambda-i)(\lambda+i)$.
Characteristic values: $\lambda_{1}=i$ and $\lambda_{2}=-i$.
Associated eigenvectors: $\mathbf{v}_{1}=(1,-i)$ and $\mathbf{v}_{2}=(1, i)$.

$$
\begin{aligned}
& \left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{-i}=\binom{i}{1}=i\binom{1}{-i}, \\
& \left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{i}=\binom{-i}{1}=-i\binom{1}{i} .
\end{aligned}
$$

$\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis of eigenvectors. In which space?

Complexification

Instead of the real vector space \mathbb{R}^{2}, we consider a complex vector space \mathbb{C}^{2} (all complex numbers are admissible as scalars).
The linear operator $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(\mathbf{x})=A \mathbf{x}$ is replaced by the complexified linear operator $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, F(\mathbf{x})=A \mathbf{x}$.
The vectors $\mathbf{v}_{1}=(1,-i)$ and $\mathbf{v}_{2}=(1, i)$ form a basis for \mathbb{C}^{2}.

$$
\left|\begin{array}{rr}
1 & 1 \\
-i & i
\end{array}\right|=2 i \neq 0
$$

Example. $\quad A_{\phi}=\left(\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$.
Linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, L(\mathbf{x})=A_{\phi} \mathbf{x}$ is the rotation about the origin by the angle ϕ (counterclockwise).
Characteristic equation: $\left|\begin{array}{cc}\cos \phi-\lambda & -\sin \phi \\ \sin \phi & \cos \phi-\lambda\end{array}\right|=0$.

$$
(\cos \phi-\lambda)^{2}+\sin ^{2} \phi=0
$$

$\lambda_{1}=\cos \phi+i \sin \phi=e^{i \phi}, \quad \lambda_{2}=\cos \phi-i \sin \phi=e^{-i \phi}$.
Consider vectors $\mathbf{v}_{1}=(1,-i), \mathbf{v}_{2}=(1, i)$.
$\left(\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)\binom{1}{-i}=\binom{\cos \phi+i \sin \phi}{\sin \phi-i \cos \phi}=e^{i \phi}\binom{1}{-i}$,
$\left(\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)\binom{1}{i}=\binom{\cos \phi-i \sin \phi}{\sin \phi+i \cos \phi}=e^{-i \phi}\binom{1}{i}$.
Thus $A_{\phi} \mathbf{v}_{1}=e^{i \phi} \mathbf{v}_{1}, A_{\phi} \mathbf{v}_{2}=e^{-i \phi} \mathbf{v}_{2}$.

Beyond linear structure

n-dimensional coordinate vector space \mathbb{R}^{n} carries additional structure: length and dot product.

Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
Length: $|\mathbf{x}|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$.
Dot product: $\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$.
Length and dot product \Longrightarrow angle between vectors
Angle: $\angle(\mathbf{x}, \mathbf{y})=\arccos \frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}||\mathbf{y}|}$.
Orthogonality: $\angle(\mathbf{x}, \mathbf{y})=90^{\circ}$ if $\mathbf{x} \cdot \mathbf{y}=0$.

Properties of the length function:
(i) $|\mathbf{x}| \geq 0,|\mathbf{x}|=0$ only for $\mathbf{x}=\mathbf{0}$
(positivity)
(ii) $|r \mathbf{x}|=|r||\mathbf{x}|$ for all $r \in \mathbb{R}$
(homogeneity)
(iii) $|\mathbf{x}+\mathbf{y}| \leq|\mathbf{x}|+|\mathbf{y}| \quad$ (triangle inequality)

Properties of the dot product:
(i) $\mathbf{x} \cdot \mathbf{x} \geq 0, \mathbf{x} \cdot \mathbf{x}=0$ only for $\mathbf{x}=\mathbf{0}$ (positivity)
(ii) $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
(iii) $(r \mathbf{x}) \cdot \mathbf{y}=r(\mathbf{x} \cdot \mathbf{y})$
(symmetry)
(iv) $(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z}$
(homogeneity)
(distributive law)
(iii) and (iv) $\Longrightarrow \mathbf{x} \cdot \mathbf{y}$ is a linear function of \mathbf{x} (ii) $\Longrightarrow \mathbf{x} \cdot \mathbf{y}$ is a linear function of \mathbf{y} as well

That is, the dot product is a bilinear function.
Relation between length and dot product: $|\mathbf{x}|=\sqrt{\mathbf{x} \cdot \mathbf{x}}$

Norm

The notion of norm generalizes the notion of length of a vector in \mathbb{R}^{n}.

Definition. Let V be a vector space. A function $\alpha: V \rightarrow \mathbb{R}$ is called a norm on V if it has the following properties:
(i) $\alpha(\mathbf{x}) \geq 0, \alpha(\mathbf{x})=0$ only for $\mathbf{x}=\mathbf{0} \quad$ (positivity) (ii) $\alpha(r \mathbf{x})=|r| \alpha(\mathbf{x})$ for all $r \in \mathbb{R} \quad$ (homogeneity) (iii) $\alpha(\mathbf{x}+\mathbf{y}) \leq \alpha(\mathbf{x})+\alpha(\mathbf{y}) \quad$ (triangle inequality)

Notation. The norm of a vector $\mathrm{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_{1}$ and $\|\mathbf{x}\|_{2}$.

Examples. $\quad V=\mathbb{R}^{n}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

- $\|\mathbf{x}\|_{\infty}=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)$.

Positivity and homogeneity are obvious.
The triangle inequality:

$$
\begin{aligned}
\left|x_{i}+y_{i}\right| \leq\left|x_{i}\right|+\left|y_{i}\right| & \leq \max _{j}\left|x_{j}\right|+\max _{j}\left|y_{j}\right| \\
\Longrightarrow \max _{j}\left|x_{j}+y_{j}\right| & \leq \max _{j}\left|x_{j}\right|+\max _{j}\left|y_{j}\right|
\end{aligned}
$$

- $\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$.

Positivity and homogeneity are obvious.
The triangle inequality: $\left|x_{i}+y_{i}\right| \leq\left|x_{i}\right|+\left|y_{i}\right|$

$$
\Longrightarrow \quad \sum_{j}\left|x_{j}+y_{j}\right| \leq \sum_{j}\left|x_{j}\right|+\sum_{j}\left|y_{j}\right|
$$

Examples. $\quad V=\mathbb{R}^{n}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

- $\|\mathbf{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}, \quad p>0$.

Theorem $\|\mathbf{x}\|_{p}$ is a norm on \mathbb{R}^{n} for any $p \geq 1$. Remark. $\|\mathbf{x}\|_{2}=|\mathbf{x}|$.

Definition. A normed vector space is a vector space endowed with a norm.
The norm defines a distance function on the normed vector space: $\operatorname{dist}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$.
Then we say that a sequence $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ converges to a vector \mathbf{x} if $\operatorname{dist}\left(\mathbf{x}, \mathbf{x}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Unit circle: $\|x\|=1$

$$
\begin{aligned}
\|\mathbf{x}\| & =\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2} & & \text { black } \\
\|\mathbf{x}\| & =\left(\frac{1}{2} x_{1}^{2}+x_{2}^{2}\right)^{1 / 2} & & \text { green } \\
\|\mathbf{x}\| & =\left|x_{1}\right|+\left|x_{2}\right| & & \text { blue } \\
\|\mathbf{x}\| & =\max \left(\left|x_{1}\right|,\left|x_{2}\right|\right) & & \text { red }
\end{aligned}
$$

Examples. $\quad V=C[a, b], \quad f:[a, b] \rightarrow \mathbb{R}$.

- $\|f\|_{\infty}=\max _{a \leq x \leq b}|f(x)| \quad$ (uniform norm).
- $\|f\|_{1}=\int_{a}^{b}|f(x)| d x$.
- $\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}, p>0$.

Theorem $\|f\|_{p}$ is a norm on $C[a, b]$ for any $p \geq 1$.

