MATH 311-504 Topics in Applied Mathematics Lecture 3-2: Complex eigenvalues and eigenvectors. Norm.

Fundamental Theorem of Algebra

Any polynomial of degree $n \ge 1$, with complex coefficients, has exactly *n* roots (counting with multiplicities).

Equivalently, if

$$p(z) = a_n z^n + a_{n-1} z + \cdots + a_1 z + a_0,$$

where $a_i \in \mathbb{C}$ and $a_n \neq 0$, then there exist complex numbers z_1, z_2, \ldots, z_n such that

$$p(z) = a_n(z-z_1)(z-z_2)\dots(z-z_n).$$

Complex eigenvalues/eigenvectors

Example.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.

det $(A - \lambda I) = \lambda^2 + 1 = (\lambda - i)(\lambda + i)$. Characteristic values: $\lambda_1 = i$ and $\lambda_2 = -i$. Associated eigenvectors: $\mathbf{v}_1 = (1, -i)$ and $\mathbf{v}_2 = (1, i)$.

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \begin{pmatrix} i \\ 1 \end{pmatrix} = i \begin{pmatrix} 1 \\ -i \end{pmatrix},$$
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} -i \\ 1 \end{pmatrix} = -i \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

 \mathbf{v}_1 , \mathbf{v}_2 is a basis of eigenvectors. In which space?

Complexification

Instead of the real vector space \mathbb{R}^2 , we consider a complex vector space \mathbb{C}^2 (all complex numbers are admissible as scalars).

The linear operator $f : \mathbb{R}^2 \to \mathbb{R}^2$, $f(\mathbf{x}) = A\mathbf{x}$ is replaced by the complexified linear operator $F : \mathbb{C}^2 \to \mathbb{C}^2$, $F(\mathbf{x}) = A\mathbf{x}$.

The vectors $\mathbf{v}_1 = (1, -i)$ and $\mathbf{v}_2 = (1, i)$ form a basis for \mathbb{C}^2 .

$$\begin{vmatrix} 1 & 1 \\ -i & i \end{vmatrix} = 2i \neq 0.$$

Example.
$$A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

Linear operator $L : \mathbb{R}^2 \to \mathbb{R}^2$, $L(\mathbf{x}) = A_{\phi}\mathbf{x}$ is the rotation about the origin by the angle ϕ (counterclockwise).

Characteristic equation: $\begin{vmatrix} \cos \phi - \lambda & -\sin \phi \\ \sin \phi & \cos \phi - \lambda \end{vmatrix} = 0.$ $(\cos \phi - \lambda)^2 + \sin^2 \phi = 0.$ $\lambda_1 = \cos \phi + i \sin \phi = e^{i\phi}, \ \lambda_2 = \cos \phi - i \sin \phi = e^{-i\phi}.$ Consider vectors $\mathbf{v}_1 = (1, -i), \ \mathbf{v}_2 = (1, i).$ $\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \begin{pmatrix} \cos\phi + i\sin\phi \\ \sin\phi - i\cos\phi \end{pmatrix} = e^{i\phi} \begin{pmatrix} 1 \\ -i \end{pmatrix},$ $\begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} 1\\ i \end{pmatrix} = \begin{pmatrix} \cos\phi - i\sin\phi\\ \sin\phi + i\cos\phi \end{pmatrix} = e^{-i\phi} \begin{pmatrix} 1\\ i \end{pmatrix}.$ Thus $A_{\phi}\mathbf{v}_1 = e^{i\phi}\mathbf{v}_1$, $A_{\phi}\mathbf{v}_2 = e^{-i\phi}\mathbf{v}_2$.

Beyond linear structure

n-dimensional coordinate vector space \mathbb{R}^n carries additional structure: *length* and *dot product*.

Let
$$\mathbf{x} = (x_1, x_2, \dots, x_n), \ \mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$$
.
Length: $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$.
Dot product: $\mathbf{x} \cdot \mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n$.
Length and dot product \implies angle between vectors
Angle: $\angle(\mathbf{x}, \mathbf{y}) = \arccos \frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}| |\mathbf{y}|}$.

Orthogonality: $\angle(\mathbf{x}, \mathbf{y}) = 90^{\circ}$ if $\mathbf{x} \cdot \mathbf{y} = 0$.

Properties of the length function: (i) $|\mathbf{x}| \ge 0$, $|\mathbf{x}| = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $|r\mathbf{x}| = |r| |\mathbf{x}|$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$ (triangle inequality) Properties of the dot product: (i) $\mathbf{x} \cdot \mathbf{x} > 0$, $\mathbf{x} \cdot \mathbf{x} = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ (symmetry) (iii) $(r\mathbf{x}) \cdot \mathbf{y} = r(\mathbf{x} \cdot \mathbf{y})$ (homogeneity) (iv) $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$ (distributive law) (iii) and (iv) $\implies \mathbf{x} \cdot \mathbf{y}$ is a linear function of \mathbf{x} (ii) $\implies \mathbf{x} \cdot \mathbf{y}$ is a linear function of \mathbf{y} as well That is, the dot product is a *bilinear* function. Relation between length and dot product: $|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha : V \to \mathbb{R}$ is called a **norm** on V if it has the following properties:

(i) $\alpha(\mathbf{x}) \ge 0$, $\alpha(\mathbf{x}) = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\alpha(r\mathbf{x}) = |r| \alpha(\mathbf{x})$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $\alpha(\mathbf{x} + \mathbf{y}) \le \alpha(\mathbf{x}) + \alpha(\mathbf{y})$ (triangle inequality)

Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. • $\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)$.

Positivity and homogeneity are obvious. The triangle inequality:

$$\begin{aligned} |x_i + y_i| &\leq |x_i| + |y_i| \leq \max_j |x_j| + \max_j |y_j| \\ \implies \max_j |x_j + y_j| \leq \max_j |x_j| + \max_j |y_j| \end{aligned}$$

• $\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_n|.$

Positivity and homogeneity are obvious.

The triangle inequality: $|x_i + y_i| \le |x_i| + |y_i|$

$$\implies \sum_{j} |x_j + y_j| \le \sum_{j} |x_j| + \sum_{j} |y_j|$$

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. • $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$, p > 0. Theorem $\|\mathbf{x}\|_p$ is a norm on \mathbb{R}^n for any $p \ge 1$. Remark. $\|\mathbf{x}\|_2 = |\mathbf{x}|$.

Definition. A **normed vector space** is a vector space endowed with a norm.

The norm defines a distance function on the normed vector space: $dist(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$.

Then we say that a sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to a vector \mathbf{x} if $dist(\mathbf{x}, \mathbf{x}_n) \to 0$ as $n \to \infty$.

$$\begin{split} \|\mathbf{x}\| &= (x_1^2 + x_2^2)^{1/2} \\ \|\mathbf{x}\| &= \left(\frac{1}{2}x_1^2 + x_2^2\right)^{1/2} \\ \|\mathbf{x}\| &= |x_1| + |x_2| \\ \|\mathbf{x}\| &= \max(|x_1|, |x_2|) \end{split}$$

black green blue red

Examples.
$$V = C[a, b], f : [a, b] \rightarrow \mathbb{R}.$$

• $||f||_{\infty} = \max_{a \le x \le b} |f(x)|$ (uniform norm).

•
$$||f||_1 = \int_a^b |f(x)| \, dx.$$

•
$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p > 0.$$

Theorem $||f||_p$ is a norm on C[a, b] for any $p \ge 1$.