Topics in Applied Mathematics

MATH 311-504

Orthogonal bases. The Gram-Schmidt orthogonalization process.

Lecture 3-5:

Inner product

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is *positive*, symmetric, and bi-linear. That is, if (i) $\langle \mathbf{x}, \mathbf{y} \rangle \geq 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (additivity)

Bi-linearity means that $\langle \mathbf{x}, \mathbf{y} \rangle$ is linear both as a function of \mathbf{x} and as a function of \mathbf{y} .

Principal examples.

(b) V = C[a, b],

(a) Dot product:
$$V = \mathbb{R}^n$$
,

 $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.$

 $\langle f,g\rangle = \int_a^b f(x)g(x) dx.$

Norm

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ is a **norm** on V, which means that the following conditions hold:

(i)
$$\|\mathbf{x}\| \ge 0$$
, $\|\mathbf{x}\| = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity)
(ii) $\|r\mathbf{x}\| = |r| \|\mathbf{x}\|$ for all $r \in \mathbb{R}$ (homogeneity)
(iii) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

Examples. • If $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$ then $\|\mathbf{x}\| = |\mathbf{x}|$.

• If
$$\langle f, g \rangle = \int_a^b f(x)g(x) dx$$
, then $||f|| = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$.

Angle

Cauchy-Schwarz Inequality:

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \, \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle} = \|\mathbf{x}\| \, \|\mathbf{y}\|.$$

As a consequence, we can define the *angle* between vectors in any vector space with an inner product (and induced norm):

$$\angle(\mathbf{x}, \mathbf{y}) = \arccos \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

so that

$$\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \angle (\mathbf{x}, \mathbf{y}).$$

In particular, vectors \mathbf{x} and \mathbf{y} are *orthogonal* (denoted $\mathbf{x} \perp \mathbf{y}$) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Orthogonal systems

Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$.

Definition. A nonempty set $S \subset V$ is called an **orthogonal system** if all vectors in S are mutually orthogonal. That is, $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for any $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$.

An orthogonal system $S \subset V$ is called **orthonormal** if $\|\mathbf{x}\| = 1$ for any $\mathbf{x} \in S$.

Theorem Any orthogonal system without zero vector is a linearly independent set.

Examples. • $V = \mathbb{R}^n$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$.

The standard basis $\mathbf{e}_1 = (1, 0, 0, \dots, 0)$, $\mathbf{e}_2 = (0, 1, 0, \dots, 0)$, ..., $\mathbf{e}_n = (0, 0, 0, \dots, 1)$ forms an orthonormal system.

•
$$V = \mathbb{R}^3$$
, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$.

$$\mathbf{v}_1 = (3, 5, 4), \ \mathbf{v}_2 = (3, -5, 4), \ \mathbf{v}_3 = (4, 0, -3).$$
 This set is orthogonal but not orthonormal.

• $V = C[-\pi, \pi], \langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx.$

$$f_1(x) = \sin x, \ f_2(x) = \sin 2x, \dots, \ f_n(x) = \sin nx, \dots$$

This is an orthonormal system.

Orthonormal bases

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be an orthonormal basis for an inner product space V.

Theorem Let $\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n$ and $\mathbf{y} = y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2 + \dots + y_n \mathbf{v}_n$, where $x_i, y_j \in \mathbb{R}$. Then (i) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$, (ii) $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$.

Proof: (ii) follows from (i) when y = x.

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\langle \sum_{i=1}^{n} x_{i} \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j} \right\rangle = \sum_{i=1}^{n} x_{i} \left\langle \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j} \right\rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle = \sum_{i=1}^{n} x_{i} y_{i}.$$

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for an inner product space V.

Theorem If the basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal set then for any $\mathbf{x} \in V$

$$\mathbf{x} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthonormal set then $\mathbf{x} = \langle \mathbf{x}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{x}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \dots + \langle \mathbf{x}, \mathbf{v}_n \rangle \mathbf{v}_n$.

Proof: We have that
$$\mathbf{x} = x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n$$
.
 $\implies \langle \mathbf{x}, \mathbf{v}_i \rangle = \langle x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n, \mathbf{v}_i \rangle, \quad 1 \le i \le n$.
 $\implies \langle \mathbf{x}, \mathbf{v}_i \rangle = x_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + \dots + x_n \langle \mathbf{v}_n, \mathbf{v}_i \rangle$

$$\implies \langle \mathbf{x}, \mathbf{v}_i \rangle = x_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + \dots + x_n \langle \mathbf{v}_n, \mathbf{v}_i \rangle$$
$$\implies \langle \mathbf{x}, \mathbf{v}_i \rangle = x_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle.$$

Orthogonal projection

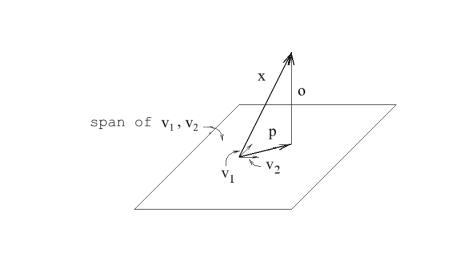
Let V be an inner product space.

Let $\mathbf{x}, \mathbf{v} \in V$, $\mathbf{v} \neq \mathbf{0}$. Then $\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$ is the **orthogonal projection** of the vector \mathbf{x} onto the vector \mathbf{v} . That is, the remainder $\mathbf{o} = \mathbf{x} - \mathbf{p}$ is orthogonal to \mathbf{v} .

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal set of vectors then

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n$$

is the **orthogonal projection** of the vector \mathbf{x} onto the subspace spanned by $\mathbf{v}_1, \dots, \mathbf{v}_n$. That is, the remainder $\mathbf{o} = \mathbf{x} - \mathbf{p}$ is orthogonal to $\mathbf{v}_1, \dots, \mathbf{v}_n$.



Orthogonalization

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let

$$egin{aligned} \mathbf{v}_1 &= \mathbf{x}_1, \ \mathbf{v}_2 &= \mathbf{x}_2 - rac{\langle \mathbf{x}_2, \mathbf{v}_1
angle}{\langle \mathbf{v}_1, \mathbf{v}_1
angle} \mathbf{v}_1, \end{aligned}$$

Then
$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$$
 is an orthogonal basis for V .
The orthogonalization of a basis as described above is called the **Gram-Schmidt process**.

span of
$$\mathbf{x}_1, \mathbf{x}_2$$
 \mathbf{p}_3 \mathbf{v}_3 \mathbf{v}_3 \mathbf{p}_3 \mathbf{v}_4 \mathbf{v}_2 \mathbf{v}_4 \mathbf{v}_5 \mathbf{v}_6 \mathbf{v}_8 \mathbf{v}_8 \mathbf{v}_8 \mathbf{v}_8 \mathbf{v}_8 \mathbf{v}_8 \mathbf{v}_8 \mathbf{v}_9 $\mathbf{v$

Normalization

Let V be a vector space with an inner product. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.

Let
$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$$
, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$,..., $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}$.

Then $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.

Problem. Let Π be the plane in \mathbb{R}^3 spanned by vectors $\mathbf{x}_1 = (1, 2, 2)$ and $\mathbf{x}_2 = (-1, 0, 2)$.

(i) Find an orthonormal basis for Π . (ii) Extend it to an orthonormal basis for \mathbb{R}^3 .

 $\mathbf{x}_1, \mathbf{x}_2$ is a basis for the plane Π . We can extend it to a basis for \mathbb{R}^3 by adding one vector from the standard basis. For instance, vectors $\mathbf{x}_1, \mathbf{x}_2$, and

$$\mathbf{x}_3=(0,0,1)$$
 form a basis for \mathbb{R}^3 because
$$\begin{vmatrix} 1&2&2\\-1&0&2\\0&0&1 \end{vmatrix}=\begin{vmatrix} 1&2\\-1&0 \end{vmatrix}=2\neq 0.$$

Using the Gram-Schmidt process, we orthogonalize the basis $\mathbf{x}_1 = (1, 2, 2), \ \mathbf{x}_2 = (-1, 0, 2), \ \mathbf{x}_3 = (0, 0, 1)$:

$$\mathbf{v}_1 = \mathbf{x}_1 = (1, 2, 2),$$
 $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{2} \mathbf{v}_1 = (-1, 0, 2) - \frac{3}{2} (1, 2, 2)$

$$egin{align} \mathbf{v}_1 &= \mathbf{x}_1 = (1,2,2), \ \mathbf{v}_2 &= \mathbf{x}_2 - rac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (-1,0,2) - rac{3}{9} (1,2,2) \ \end{cases}$$

$$egin{align} \mathbf{v}_2 &= \mathbf{x}_2 - rac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (-1, 0, 2) - rac{3}{9} (1, 2, 2) \ &= (-4/3, -2/3, 4/3), \end{cases}$$

 $\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2$

 $=(0,0,1)-\frac{2}{9}(1,2,2)-\frac{4/3}{4}(-4/3,-2/3,4/3)$

= (2/9, -2/9, 1/9).

Now $\mathbf{v}_1=(1,2,2)$, $\mathbf{v}_2=(-4/3,-2/3,4/3)$, $\mathbf{v}_3=(2/9,-2/9,1/9)$ is an orthogonal basis for \mathbb{R}^3 while $\mathbf{v}_1,\mathbf{v}_2$ is an orthogonal basis for Π . It remains to normalize these vectors.

while
$$\mathbf{v}_1, \mathbf{v}_2$$
 is an orthogonal basis for II. It remains to normalize these vectors. $\langle \mathbf{v}_1, \mathbf{v}_1 \rangle = 9 \implies \|\mathbf{v}_1\| = 3$ $\langle \mathbf{v}_2, \mathbf{v}_2 \rangle = 4 \implies \|\mathbf{v}_2\| = 2$ $\langle \mathbf{v}_3, \mathbf{v}_3 \rangle = 1/9 \implies \|\mathbf{v}_3\| = 1/3$

$$\mathbf{w}_1 = \mathbf{v}_1/\|\mathbf{v}_1\| = (1/3, 2/3, 2/3) = \frac{1}{3}(1, 2, 2),$$
 $\mathbf{w}_2 = \mathbf{v}_2/\|\mathbf{v}_2\| = (-2/3, -1/3, 2/3) = \frac{1}{3}(-2, -1, 2),$

$$\mathbf{w}_3 = \mathbf{v}_3 / \|\mathbf{v}_3\| = (2/3, -2/3, 1/3) = \frac{1}{3}(2, -2, 1).$$

 $\mathbf{w}_1, \mathbf{w}_2$ is an orthonormal basis for Π .

 $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ is an orthonormal basis for \mathbb{R}^3 .