MATH 311-504
 Topics in Applied Mathematics

Lecture 3-6:
The Gram-Schmidt process (continued).

Orthogonal systems

Let V be a vector space with an inner product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$.
Definition. A nonempty set $S \subset V$ is called an orthogonal system if all vectors in S are mutually orthogonal. That is, $\langle\mathbf{x}, \mathbf{y}\rangle=0$ for any $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$.
An orthogonal system $S \subset V$ is called orthonormal if $\|\mathbf{x}\|=1$ for any $\mathbf{x} \in S$.

Theorem Any orthogonal system without zero vector is a linearly independent set.

Orthogonal projection

Let V be an inner product space.
Let $\mathbf{x}, \mathbf{v} \in V, \mathbf{v} \neq \mathbf{0}$. Then $\mathbf{p}=\frac{\langle\mathbf{x}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v}$ is the
orthogonal projection of the vector x onto the vector \mathbf{v}. That is, the remainder $\mathbf{o}=\mathbf{x}-\mathbf{p}$ is orthogonal to \mathbf{v}.
If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal set of vectors then

$$
\mathbf{p}=\frac{\left\langle\mathbf{x}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}+\frac{\left\langle\mathbf{x}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}+\cdots+\frac{\left\langle\mathbf{x}, \mathbf{v}_{n}\right\rangle}{\left\langle\mathbf{v}_{n}, \mathbf{v}_{n}\right\rangle} \mathbf{v}_{n}
$$

is the orthogonal projection of the vector \mathbf{x} onto the subspace spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. That is, the remainder $\mathbf{o}=\mathbf{x}-\mathbf{p}$ is orthogonal to $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.
Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ is a basis for V. Let
$\mathbf{v}_{1}=\mathbf{x}_{1}$,
$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$,
$\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$,
$\mathbf{v}_{n}=\mathbf{x}_{n}-\frac{\left\langle\mathbf{x}_{n}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\cdots-\frac{\left\langle\mathbf{x}_{n}, \mathbf{v}_{n-1}\right\rangle}{\left\langle\mathbf{v}_{n-1}, \mathbf{v}_{n-1}\right\rangle} \mathbf{v}_{n-1}$.
Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for V.

> Any basis $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$

Orthogonal basis

$$
\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}
$$

Properties of the Gram-Schmidt process:

- $\mathbf{v}_{k}=\mathbf{x}_{k}-\left(\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{k-1} \mathbf{x}_{k-1}\right), 1 \leq k \leq n$;
- the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is the same as the span of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$;
- \mathbf{v}_{k} is orthogonal to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$;
- $\mathbf{v}_{k}=\mathbf{x}_{k}-\mathbf{p}_{k}$, where \mathbf{p}_{k} is the orthogonal projection of the vector \mathbf{x}_{k} on the subspace spanned by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$;
- $\left\|\mathbf{v}_{k}\right\|$ is the distance from \mathbf{x}_{k} to the subspace spanned by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$.

Problem. Find the distance from the point $\mathbf{y}=(0,0,0,1)$ to the subspace $\Pi \subset \mathbb{R}^{4}$ spanned by vectors $\mathbf{x}_{1}=(1,-1,1,-1), \mathbf{x}_{2}=(1,1,3,-1)$, and $\mathbf{x}_{3}=(-3,7,1,3)$.

Let us apply the Gram-Schmidt process to vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$. The desired distance will be $\left|\mathbf{v}_{4}\right|$.

$$
\begin{aligned}
& \mathbf{x}_{1}=(1,-1,1,-1), \mathbf{x}_{2}=(1,1,3,-1), \\
& \mathbf{x}_{3}=(-3,7,1,3), \mathbf{y}=(0,0,0,1) .
\end{aligned}
$$

$$
\mathbf{v}_{1}=\mathbf{x}_{1}=(1,-1,1,-1),
$$

$$
\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}=(1,1,3,-1)-\frac{4}{4}(1,-1,1,-1)
$$

$$
=(0,2,2,0) \text {, }
$$

$$
\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}
$$

$$
=(-3,7,1,3)-\frac{-12}{4}(1,-1,1,-1)-\frac{16}{8}(0,2,2,0)
$$

$$
=(0,0,0,0) .
$$

The Gram-Schmidt process can be used to check linear independence of vectors!

The vector \mathbf{x}_{3} is a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2}.
Π is a plane, not a 3 -dimensional subspace.
We should orthogonalize vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}$.
$\mathbf{v}_{4}=\mathbf{y}-\frac{\left\langle\mathbf{y}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{y}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$
$=(0,0,0,1)-\frac{-1}{4}(1,-1,1,-1)-\frac{0}{8}(0,2,2,0)$
$=(1 / 4,-1 / 4,1 / 4,3 / 4)$.
$\left|\mathbf{v}_{4}\right|=\left|\left(\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{3}{4}\right)\right|=\frac{1}{4}|(1,-1,1,3)|=\frac{\sqrt{12}}{4}=\frac{\sqrt{3}}{2}$.

Problem. Find the distance from the point $\mathbf{z}=(0,0,1,0)$ to the plane Π that passes through the point $\mathbf{x}_{0}=(1,0,0,0)$ and is parallel to the vectors $\mathbf{v}_{1}=(1,-1,1,-1)$ and $\mathbf{v}_{2}=(0,2,2,0)$.

The plane Π is not a subspace of \mathbb{R}^{4} as it does not pass through the origin. Let $\Pi_{0}=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Then $\Pi=\Pi_{0}+\mathbf{x}_{0}$. Hence the distance from the point \mathbf{z} to the plane Π is the same as the distance from the point $\mathbf{z}-\mathbf{x}_{0}$ to the plane Π_{0}.

We shall apply the Gram-Schmidt process to vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{z}-\mathbf{x}_{0}$. This will yield an orthogonal system $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$. The desired distance will be $\left|\mathbf{w}_{3}\right|$.

$$
\begin{aligned}
& \mathbf{v}_{1}=(1,-1,1,-1), \mathbf{v}_{2}=(0,2,2,0), \mathbf{z}-\mathbf{x}_{0}=(-1,0,1,0) . \\
& \mathbf{w}_{1}=\mathbf{v}_{1}=(1,-1,1,-1), \\
& \mathbf{w}_{2}=\mathbf{v}_{2}-\frac{\left\langle\mathbf{v}_{2}, \mathbf{w}_{1}\right\rangle}{\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle} \mathbf{w}_{1}=\mathbf{v}_{2}=(0,2,2,0) \text { as } \mathbf{v}_{2} \perp \mathbf{v}_{1} .
\end{aligned}
$$

$$
\mathbf{w}_{3}=\left(\mathbf{z}-\mathbf{x}_{0}\right)-\frac{\left\langle\mathbf{z}-\mathbf{x}_{0}, \mathbf{w}_{1}\right\rangle}{\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle} \mathbf{w}_{1}-\frac{\left\langle\mathbf{z}-\mathbf{x}_{0}, \mathbf{w}_{2}\right\rangle}{\left\langle\mathbf{w}_{2}, \mathbf{w}_{2}\right\rangle} \mathbf{w}_{2}
$$

$$
=(-1,0,1,0)-\frac{0}{4}(1,-1,1,-1)-\frac{2}{8}(0,2,2,0)
$$

$$
=(-1,-1 / 2,1 / 2,0) .
$$

$$
\left|\boldsymbol{w}_{3}\right|=\left|\left(-1,-\frac{1}{2}, \frac{1}{2}, 0\right)\right|=\frac{1}{2}|(-2,-1,1,0)|=\frac{\sqrt{6}}{2}=\sqrt{\frac{3}{2}} .
$$

Modifications of the Gram-Schmidt process

The first modification combines orthogonalization with normalization. Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ is a basis for an inner product space V. Let

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1}, \quad \mathbf{w}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}, \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\left\langle\mathbf{x}_{2}, \mathbf{w}_{1}\right\rangle \mathbf{w}_{1}, \quad \mathbf{w}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}, \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\left\langle\mathbf{x}_{3}, \mathbf{w}_{1}\right\rangle \mathbf{w}_{1}-\left\langle\mathbf{x}_{3}, \mathbf{w}_{2}\right\rangle \mathbf{w}_{2}, \quad \mathbf{w}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|},
\end{aligned}
$$

$$
\mathbf{v}_{n}=\mathbf{x}_{n}-\left\langle\mathbf{x}_{n}, \mathbf{w}_{1}\right\rangle \mathbf{w}_{1}-\cdots-\left\langle\mathbf{x}_{n}, \mathbf{w}_{n-1}\right\rangle \mathbf{w}_{n-1}
$$

$$
\mathbf{w}_{n}=\frac{\mathbf{v}_{n}}{\left\|\mathbf{v}_{n}\right\|} .
$$

Then $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$ is an orthonormal basis for V.

Modifications of the Gram-Schmidt process

Further modification is a recursive process which is more stable to roundoff errors than the original process. Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ is a basis for an inner product space V. Let
$\mathbf{w}_{1}=\frac{\mathbf{x}_{1}}{\left\|\mathbf{x}_{1}\right\|}$,
$\mathbf{x}_{2}^{\prime}=\mathbf{x}_{2}-\left\langle\mathbf{x}_{2}, \mathbf{w}_{1}\right\rangle \mathbf{w}_{1}$,
$\mathbf{x}_{3}^{\prime}=\mathbf{x}_{3}-\left\langle\mathbf{x}_{3}, \mathbf{w}_{1}\right\rangle \mathbf{w}_{1}$,
$\mathbf{x}_{n}^{\prime}=\mathbf{x}_{n}-\left\langle\mathbf{x}_{n}, \mathbf{w}_{1}\right\rangle \mathbf{w}_{1}$.
Then $\mathbf{w}_{1}, \mathbf{x}_{2}^{\prime}, \ldots, \mathbf{x}_{n}^{\prime}$ is a basis for $V,\left\|\mathbf{w}_{1}\right\|=1$, and \mathbf{w}_{1} is orthogonal to $\mathbf{x}_{2}^{\prime}, \ldots, \mathbf{x}_{n}^{\prime}$. Now repeat the process with vectors $\mathbf{x}_{2}^{\prime}, \ldots, \mathbf{x}_{n}^{\prime}$, and so on.

Problem. Approximate the function $f(x)=e^{x}$ on the interval $[-1,1]$ by a quadratic polynomial.

The best approximation would be a polynomial $p(x)$ that minimizes the distance relative to the uniform norm:

$$
\|f-p\|_{\infty}=\max _{|x| \leq 1}|f(x)-p(x)| .
$$

However there is no analytic way to find such a polynomial. Instead, we are going to find a "least squares" approximation that minimizes the integral norm

$$
\|f-p\|_{2}=\left(\int_{-1}^{1}|f(x)-p(x)|^{2} d x\right)^{1 / 2}
$$

The norm $\|\cdot\|_{2}$ is induced by the inner product

$$
\langle g, h\rangle=\int_{-1}^{1} g(x) h(x) d x
$$

Therefore $\|f-p\|_{2}$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_{2} of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^{2}$ which form a basis for \mathcal{P}_{2}.
This would yield an orthogonal basis p_{0}, p_{1}, p_{2}.
Then

$$
p(x)=\frac{\left\langle f, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)+\frac{\left\langle f, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}(x)+\frac{\left\langle f, p_{2}\right\rangle}{\left\langle p_{2}, p_{2}\right\rangle} p_{2}(x)
$$

