MATH 311-504
 Topics in Applied Mathematics

Lecture 3-8:
 Orthogonal polynomials (continued). Symmetric matrices.

Orthogonal polynomials

\mathcal{P} : the vector space of all polynomials with real coefficients: $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$.
Suppose that \mathcal{P} is endowed with an inner product.
Definition. Orthogonal polynomials (relative to the inner product) are polynomials $p_{0}, p_{1}, p_{2}, \ldots$ such that $\operatorname{deg} p_{n}=n$ (p_{0} is a nonzero constant) and $\left\langle p_{n}, p_{m}\right\rangle=0$ for $n \neq m$.

Orthogonal polynomials can be obtained by applying the Gram-Schmidt orthogonalization process to the basis $1, x, x^{2}, \ldots$.

Theorem (a) Orthogonal polynomials always exist.
(b) The orthogonal polynomial of a fixed degree is unique up to scaling.
(c) A polynomial $p \neq 0$ is an orthogonal polynomial if and only if $\langle p, q\rangle=0$ for any polynomial q with $\operatorname{deg} q<\operatorname{deg} p$.
(d) A polynomial $p \neq 0$ is an orthogonal polynomial if and only if $\left\langle p, x^{k}\right\rangle=0$ for any
$0 \leq k<\operatorname{deg} p$.

Example. $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$.
Orthogonal polynomials relative to this inner product are called the Legendre polynomials.
The standardization for the Legendre polynomials is $P_{n}(1)=1$. Recurrent formula:

$$
(n+1) P_{n+1}=(2 n+1) x P_{n}(x)-n P_{n-1}(x) .
$$

$P_{0}(x)=1, P_{1}(x)=x$,
$P_{2}(x)=\frac{1}{2}\left(3 x P_{1}(x)-P_{0}(x)\right)=\frac{1}{2}\left(3 x^{2}-1\right)$,
$P_{3}(x)=\frac{1}{3}\left(5 x P_{2}(x)-2 P_{1}(x)\right)=\frac{1}{2}\left(5 x^{3}-3 x\right)$,
$P_{4}(x)=\frac{1}{4}\left(7 x P_{3}(x)-3 P_{2}(x)\right)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$.

Problem. Find a quadratic polynomial that is the best least squares fit to the function $f(x)=|x|$ on the interval $[-1,1]$.

The best least squares fit is a polynomial $p(x)$ that minimizes the distance relative to the integral norm

$$
\|f-p\|=\left(\int_{-1}^{1}|f(x)-p(x)|^{2} d x\right)^{1 / 2}
$$

over all polynomials of degree 2 .
The norm $\|f-p\|$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_{2} of polynomials of degree at most 2 .

Problem. Find a quadratic polynomial that is the best least squares fit to the function $f(x)=|x|$ on the interval $[-1,1]$.

Solution:

$$
\begin{aligned}
p(x) & =\frac{\left\langle f, P_{0}\right\rangle}{\left\langle P_{0}, P_{0}\right\rangle} P_{0}(x)+\frac{\left\langle f, P_{1}\right\rangle}{\left\langle P_{1}, P_{1}\right\rangle} P_{1}(x)+\frac{\left\langle f, P_{2}\right\rangle}{\left\langle P_{2}, P_{2}\right\rangle} P_{2}(x) \\
& =\frac{1}{2} P_{0}(x)+\frac{5}{8} P_{2}(x) \\
& =\frac{1}{2}+\frac{5}{16}\left(3 x^{2}-1\right)=\frac{3}{16}\left(5 x^{2}+1\right) .
\end{aligned}
$$

Legendre polynomials

Definition. Chebyshev polynomials $T_{0}, T_{1}, T_{2}, \ldots$ are orthogonal polynomials relative to the inner product

$$
\langle p, q\rangle=\int_{-1}^{1} \frac{p(x) q(x)}{\sqrt{1-x^{2}}} d x
$$

with the standardization $T_{n}(1)=1$.
Remark. "T" is like in "Tschebyscheff".
Change of variable in the integral: $x=\cos \phi$.

$$
\begin{aligned}
\langle p, q\rangle & =-\int_{0}^{\pi} \frac{p(\cos \phi) q(\cos \phi)}{\sqrt{1-\cos ^{2} \phi}} \cos ^{\prime} \phi d \phi \\
& =\int_{0}^{\pi} p(\cos \phi) q(\cos \phi) d \phi
\end{aligned}
$$

Theorem. $\quad T_{n}(\cos \phi)=\cos n \phi$.

$$
\begin{aligned}
& \left\langle T_{n}, T_{m}\right\rangle=\int_{0}^{\pi} T_{n}(\cos \phi) T_{m}(\cos \phi) d \phi \\
= & \int_{0}^{\pi} \cos (n \phi) \cos (m \phi) d \phi=0 \text { if } n \neq m .
\end{aligned}
$$

Recurrent formula: $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$.
$T_{0}(x)=1, \quad T_{1}(x)=x$,
$T_{2}(x)=2 x^{2}-1$,
$T_{3}(x)=4 x^{3}-3 x$,
$T_{4}(x)=8 x^{4}-8 x^{2}+1, \ldots$
That is, $\cos 2 \phi=2 \cos ^{2} \phi-1$,
$\cos 3 \phi=4 \cos ^{3} \phi-3 \cos \phi$,
$\cos 4 \phi=8 \cos ^{4} \phi-8 \cos ^{2} \phi+1, \ldots$

Chebyshev polynomials

Symmetric matrices

Proposition For any $n \times n$ matrix A and any vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, \quad A \mathbf{x} \cdot \mathbf{y}=\mathbf{x} \cdot A^{T} \mathbf{y}$.

Proof: $\quad A \mathbf{x} \cdot \mathbf{y}=\mathbf{y}^{T} A \mathbf{x}=\left(\mathbf{y}^{T} A \mathbf{x}\right)^{T}=\mathbf{x}^{T} A^{T} \mathbf{y}=$ $=A^{T} \mathbf{y} \cdot \mathbf{x}=\mathbf{x} \cdot A^{T} \mathbf{y}$.

Definition. An $n \times n$ matrix A is called

- symmetric if $A^{T}=A$;
- orthogonal if $A A^{T}=A^{T} A=I$, that is, if $A^{T}=A^{-1}$;
- normal if $A A^{T}=A^{T} A$.

Clearly, symmetric and orthogonal matrices are normal.

Theorem If \mathbf{x} and \mathbf{y} are eigenvectors of a symmetric matrix A associated with different eigenvalues, then $\mathbf{x} \cdot \mathbf{y}=0$.
Proof: Suppose $A \mathbf{x}=\lambda \mathbf{x}$ and $A \mathbf{y}=\mu \mathbf{y}$, where $\lambda \neq \mu$. Then $A \mathbf{x} \cdot \mathbf{y}=\lambda(\mathbf{x} \cdot \mathbf{y}), \mathbf{x} \cdot A \mathbf{y}=\mu(\mathbf{x} \cdot \mathbf{y})$.
But $A \mathbf{x} \cdot \mathbf{y}=\mathbf{x} \cdot A^{T} \mathbf{y}=\mathbf{x} \cdot A \mathbf{y}$.
Thus $\lambda(\mathbf{x} \cdot \mathbf{y})=\mu(\mathbf{x} \cdot \mathbf{y}) \Longrightarrow \mathbf{x} \cdot \mathbf{y}=0$.
Theorem Suppose A is a symmetric $n \times n$ matrix.
Then (a) all eigenvalues of A are real;
(b) there exists an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of A.

Example. $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1\end{array}\right)$.

- A is symmetric.
- A has three eigenvalues: 0,2 , and 3 .
- Associated eigenvectors are $\mathbf{v}_{1}=(-1,0,1)$,
$\mathbf{v}_{2}=(1,0,1)$, and $\mathbf{v}_{3}=(0,1,0)$.
- Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ form an orthogonal basis for \mathbb{R}^{3}.

