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Symmetric and orthogonal matrices.



Definition. An n×n matrix A is called
• symmetric if AT = A;

• orthogonal if AAT = ATA = I , that is, if
AT = A−1;

• normal if AAT = ATA.

Proposition For any n×n matrix A and any

column vectors x, y ∈ Rn, Ax · y = x · ATy.

Theorem If x and y are eigenvectors of a

symmetric matrix A associated with different
eigenvalues, then x · y = 0.



Theorem If A is a normal matrix then
Null(A) = Null(AT ) (that is, Ax = 0 ⇐⇒ ATx = 0).

Proof: Ax = 0 ⇐⇒ Ax · Ax = 0 ⇐⇒ x · ATAx = 0
⇐⇒ x · AATx = 0 ⇐⇒ ATx · ATx = 0 ⇐⇒ ATx = 0.

Proposition If a matrix A is normal, so are

matrices A − λI , λ ∈ R.

Proof: Let B = A − λI , where λ ∈ R. Then
BT = (A − λI )T = AT − (λI )T = AT − λI .

We have BBT = (A − λI )(AT − λI ) = AAT − λA − λAT + λ2I ,
BTB = (AT − λI )(A − λI ) = ATA − λA − λAT + λ2I .

Hence AAT = ATA =⇒ BBT = BTB .

Thus any normal matrix A shares with AT all real
eigenvalues and the corresponding eigenvectors.

How about complex eigenvalues?



Dot product of complex vectors

Dot product of real vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn:

x · y = x1y1 + x2y2 + · · · + xnyn.

Dot product of complex vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Cn:

x · y = x1y1 + x2y2 + · · · + xnyn.

If z = r + it (r , t ∈ R) then z = r − it,
zz = r 2 + t2 = |z |2.
Hence x · x = |x1|2 + |x2|2 + · · · + |xn|2 ≥ 0.
Also, x · x = 0 if and only if x = 0.

Since z + w = z + w and zw = z w , it follows

that y · x = x · y.



Definition. Let V be a complex vector space. A

function β : V × V → C, denoted β(x, y) = 〈x, y〉,
is called an inner product on V if

(i) 〈x, y〉 ≥ 0, 〈x, x〉 = 0 only for x = 0 (positivity)

(ii) 〈x, y〉 = 〈y, x〉 (conjugate symmetry)

(iii) 〈rx, y〉 = r〈x, y〉 (homogeneity)

(iv) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 (additivity)

〈x, y〉 is complex-linear as a function of x.
The dependence on the second argument is called

half-linearity : 〈x, λy + µz〉 = λ〈x, y〉 + µ〈x, z〉.

Example. 〈f , g〉 =

∫ b

a

f (x)g(x)dx ,

f , g ∈ C ([a, b], C).



Proposition For any n×n matrix B with complex

entries and any column vectors x, y ∈ C
n,

Bx · y = x · BTy.

If BBT = BTB then Bx = 0 ⇐⇒ BTx = 0.

Theorem Suppose A is a normal matrix. Then for

any x ∈ C
n and λ ∈ C one has

Ax = λx ⇐⇒ ATx = λx.

Also, Ax = λx ⇐⇒ ATx = λ x.

Corollary All eigenvalues of a symmetric matrix

are real. Any eigenvalue λ of an orthogonal matrix
satisfies λ = λ−1 ⇐⇒ |λ| = 1.



Theorem If x and y are eigenvectors of a normal
matrix A associated with different eigenvalues, then

x · y = 0.

Theorem Let A be an n×n matrix with real
entries. Then

(a) A is normal ⇐⇒ there exists an orthonormal

basis for C
n consisting of eigenvectors of A;

(b) A is symmetric ⇐⇒ there exists an

orthonormal basis for R
n consisting of eigenvectors

of A.



Example. A =





1 0 1
0 3 0

1 0 1



.

• A is symmetric.

• A has three eigenvalues: 0, 2, and 3.

• Associated eigenvectors are v1 = (−1, 0, 1),

v2 = (1, 0, 1), and v3 = (0, 1, 0).

• Vectors 1√
2
v1,

1√
2
v2, v3 form an orthonormal

basis for R
3.



Example. Aφ =

(

cos φ − sinφ

sin φ cosφ

)

.

• AφAψ = Aφ+ψ

• A−1

φ = A−φ = AT
φ

• Aφ is orthogonal

• Columns of Aφ form an orthonormal basis.

• Rows of Aφ form an orthonormal basis.

• Eigenvalues: λ1 = cos φ + i sinφ = e iφ,
λ2 = cosφ − i sinφ = e−iφ.

• Associated eigenvectors: v1 = (1,−i),
v2 = (1, i).

• Vectors 1√
2
v1 and 1√

2
v2 form an orthonormal

basis for C2.



Orthogonal matrices

Theorem Given an n×n matrix A, the following
conditions are equivalent:
(i) A is orthogonal: AT = A−1;

(ii) columns of A form an orthonormal basis for Rn;
(iii) rows of A form an orthonormal basis for Rn.

Proof: Entries of the matrix ATA are the dot
products of columns of A. Entries of AAT are the
dot products of rows of A.

Thus an orthogonal matrix is the transition matrix
from one orthonormal basis to another.



Consider a linear operator L : Rn → Rn, L(x) = Ax,

where A is an n×n matrix.

Theorem The following conditions are equivalent:
(i) |L(x)| = |x| for all x ∈ Rn;

(ii) L(x) · L(y) = x · y for all x, y ∈ R
n;

(iii) the matrix A is orthogonal.

[(ii) =⇒ (iii): L(ei)·L(ej) = ei ·ej = 1 if i = j , and 0
otherwise. But L(e1), . . . , L(en) are columns of A.]

Definition. A transformation f : R
n → R

n is called
an isometry if it preserves distances between
points: |f (x) − f (y)| = |x − y|.
Theorem Any isometry f : Rn → Rn is

represented as f (x) = Ax + x0, where x0 ∈ R
n and

A is an orthogonal matrix.



Consider a linear operator L : Rn → Rn, L(x) = Ax,

where A is an n×n orthogonal matrix.

Theorem There exists an orthonormal basis for Rn

such that the matrix of L relative to this basis has a
diagonal block structure











D±1 O . . . O

O R1 . . . O
...

... . . . ...

O O . . . Rk











,

where D±1 is a diagonal matrix whose diagonal
entries are equal to 1 or −1, and

Rj =

(

cosφj − sinφj

sinφj cosφj

)

, φj ∈ R.



Classification of 2×2 orthogonal matrices:

(

cos φ − sinφ

sin φ cosφ

) (

−1 0
0 1

)

rotation reflection
about the origin in a line

Determinant: 1 −1

Eigenvalues: e iφ and e−iφ −1 and 1



Classification of 3×3 orthogonal matrices:

A =





1 0 0

0 cosφ − sinφ

0 sin φ cos φ



, B =





−1 0 0

0 1 0
0 0 1



,

C =





−1 0 0
0 cosφ − sin φ

0 sin φ cos φ



.

A = rotation about a line; B = reflection in a plane;
C = rotation about a line combined with reflection

in the orthogonal plane.

det A = 1, det B = det C = −1.

A has eigenvalues 1, e iφ, e−iφ. B has eigenvalues

−1, 1, 1. C has eigenvalues −1, e iφ, e−iφ.


