Math 311-504
 Topics in Applied Mathematics

Lecture 7:
Linear independence (continued).
Matrix algebra.

Linear independence

Definition. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ are called linearly dependent if they satisfy a relation

$$
t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $t_{1}, \ldots, t_{k} \in \mathbb{R}$ are not all equal to zero. Otherwise the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow t_{1}=\cdots=t_{k}=0
$$

Theorem The vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly dependent if and only if one of them is a linear combination of the others.

Definition. A subset $S \subset \mathbb{R}^{n}$ is called a hyperplane (or an affine subspace) if it has a parametric representation $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}+\mathbf{v}_{0}$, where \mathbf{v}_{i} are fixed n-dimensional vectors and t_{i} are arbitrary scalars.

The number k of parameters may depend on a representation. The hyperplane S is called a k-plane if k is as small as possible.

Theorem A hyperplane

$$
t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}+\mathbf{v}_{0}
$$

is a k-plane if and only if vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Examples

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ in \mathbb{R}^{3}.
$t_{1} \mathbf{e}_{1}+t_{2} \mathbf{e}_{2}+t_{3} \mathbf{e}_{3}=\mathbf{0} \quad \Longrightarrow \quad\left(t_{1}, t_{2}, t_{3}\right)=\mathbf{0}$
$\Longrightarrow t_{1}=t_{2}=t_{3}=0$
Thus $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are linearly independent.
- Vectors $\mathbf{v}_{1}=(4,3,0,1), \mathbf{v}_{2}=(1,-1,2,0)$, and $\mathbf{v}_{3}=(-2,2,-4,0)$ in \mathbb{R}^{4}.

It is easy to observe that $\mathbf{v}_{3}=-2 \mathbf{v}_{2}$.
$\Longrightarrow 0 \mathbf{v}_{1}+2 \mathbf{v}_{2}+1 \mathbf{v}_{3}=\mathbf{0}$
Thus $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent. At the same time, the vector \mathbf{v}_{1} is not a linear combination of \mathbf{v}_{2} and \mathbf{v}_{3}.

- Vectors $\mathbf{u}_{1}=(1,2,0), \mathbf{u}_{2}=(3,1,1)$, and
$\mathbf{u}_{3}=(4,-7,3)$ in \mathbb{R}^{3}.
We need to check if the vector equation $t_{1} \mathbf{u}_{1}+t_{2} \mathbf{u}_{2}+t_{3} \mathbf{u}_{3}=\mathbf{0}$ has solutions other than $t_{1}=t_{2}=t_{3}=0$.
This vector equation is equivalent to a system

$$
\left\{\begin{array}{l}
r_{1}+3 r_{2}+4 r_{3}=0, \\
2 r_{1}+r_{2}-7 r_{3}=0, \\
r_{2}+3 r_{3}=0 .
\end{array} \quad\left(\begin{array}{rrr|r}
1 & 3 & 4 & 0 \\
2 & 1 & -7 & 0 \\
0 & 1 & 3 & 0
\end{array}\right)\right.
$$

Row reduction yields:

$$
\left(\begin{array}{rrr|r}
1 & 3 & 4 & 0 \\
2 & 1 & -7 & 0 \\
0 & 1 & 3 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 3 & 4 & 0 \\
0 & -5 & -15 & 0 \\
0 & 1 & 3 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
1 & 3 & 4 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The variable t_{3} is free \Longrightarrow there are infinitely many solutions \Longrightarrow the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are linearly dependent.

Matrices

Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

Notation: $A=\left(a_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq m}$ or simply $A=\left(a_{i j}\right)$ if the dimensions are known.

An n-dimensional vector can be represented as a $1 \times n$ matrix (row vector) or as an $n \times 1$ matrix (column vector):

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

An $m \times n$ matrix $A=\left(a_{i j}\right)$ can be regarded as a column of n-dimensional row vectors or as a row of m-dimensional column vectors:

$$
A=\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right), \quad \mathbf{v}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)
$$

$$
A=\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right), \quad \mathbf{w}_{j}=\left(\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right)
$$

Vector algebra

Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be n-dimensional vectors, and $r \in \mathbb{R}$ be a scalar.

Vector sum: $\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$
Scalar multiple: $\quad r \mathbf{a}=\left(r a_{1}, r a_{2}, \ldots, r a_{n}\right)$
Zero vector: $\quad \mathbf{0}=(0,0, \ldots, 0)$
Negative of a vector: $\quad-\mathbf{b}=\left(-b_{1},-b_{2}, \ldots,-b_{n}\right)$
Vector difference:
$\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})=\left(a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{n}-b_{n}\right)$

Matrix algebra

Definition. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $m \times n$ matrices. The sum $A+B$ is defined to be the $m \times n$ matrix $C=\left(c_{i j}\right)$ such that $c_{i j}=a_{i j}+b_{i j}$ for all indices i, j.

That is, two matrices with the same dimensions can be added by adding their corresponding entries.

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)+\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right)=\left(\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22} \\
a_{31}+b_{31} & a_{32}+b_{32}
\end{array}\right)
$$

Definition. Given an $m \times n$ matrix $A=\left(a_{i j}\right)$ and a number r, the scalar multiple $r A$ is defined to be the $m \times n$ matrix $D=\left(d_{i j}\right)$ such that $d_{i j}=r a_{i j}$ for all indices i, j.

That is, to multiply a matrix by a scalar r, one multiplies each entry of the matrix by r.

$$
r\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{lll}
r a_{11} & r a_{12} & r a_{13} \\
r a_{21} & r a_{22} & r a_{23} \\
r a_{31} & r a_{32} & r a_{33}
\end{array}\right)
$$

The $m \times n$ zero matrix (all entries are zeros) is denoted $O_{m n}$ or simply O.

Negative of a matrix: $-A$ is defined as $(-1) A$. Matrix difference: $A-B$ is defined as $A+(-B)$.

As far as the linear operations (addition and scalar multiplication) are concerned, the $m \times n$ matrices
can be regarded as mn-dimensional vectors.

Examples

$$
\begin{aligned}
& A=\left(\begin{array}{rrr}
3 & 2 & -1 \\
1 & 1 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 1
\end{array}\right), \\
& C=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), \quad D=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

$$
A+B=\left(\begin{array}{lll}
5 & 2 & 0 \\
1 & 2 & 2
\end{array}\right), \quad A-B=\left(\begin{array}{rrr}
1 & 2 & -2 \\
1 & 0 & 0
\end{array}\right)
$$

$$
2 C=\left(\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right), \quad 3 D=\left(\begin{array}{ll}
3 & 3 \\
0 & 3
\end{array}\right)
$$

$2 C+3 D=\left(\begin{array}{ll}7 & 3 \\ 0 & 5\end{array}\right), \quad A+D$ is not defined.

Properties of linear operations

$$
\begin{aligned}
& (A+B)+C=A+(B+C) \\
& A+B=B+A \\
& A+O=O+A=A \\
& A+(-A)=(-A)+A=O \\
& r(s A)=(r s) A \\
& r(A+B)=r A+r B \\
& (r+s) A=r A+s A \\
& 1 A=A \\
& 0 A=O
\end{aligned}
$$

Dot product

Definition. The dot product of n-dimensional vectors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is a scalar

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{k=1}^{n} x_{k} y_{k}
$$

Matrix multiplication

The product of matrices A and B is defined if the number of columns in A matches the number of rows in B.

Definition. Let $A=\left(a_{i k}\right)$ be an $m \times n$ matrix and $B=\left(b_{k j}\right)$ be an $n \times p$ matrix. The product $A B$ is defined to be the $m \times p$ matrix $C=\left(c_{i j}\right)$ such that $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$ for all indices i, j.

That is, matrices are multiplied row by column:

$$
\left(\begin{array}{ccc}
* & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{cc|cc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & *
\end{array}\right)
$$

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\hline a_{21} & a_{22} & \ldots & a_{2 n} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right) \\
& B=\left(\begin{array}{c|c|c|c}
b_{11} & b_{12} & \ldots & b_{1 p} \\
b_{21} & b_{22} & \ldots & b_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n p}
\end{array}\right)=\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{p}\right) \\
& \Longrightarrow A B=\left(\begin{array}{cccc}
\mathbf{v}_{1} \cdot \mathbf{w}_{1} & \mathbf{v}_{1} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{1} \cdot \mathbf{w}_{p} \\
\mathbf{v}_{2} \cdot \mathbf{w}_{1} & \mathbf{v}_{2} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{2} \cdot \mathbf{w}_{p} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{v}_{m} \cdot \mathbf{w}_{1} & \mathbf{v}_{m} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{m} \cdot \mathbf{w}_{p}
\end{array}\right)
\end{aligned}
$$

Examples.

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\sum_{k=1}^{n} x_{k} y_{k}\right)
$$

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\begin{array}{cccc}
y_{1} x_{1} & y_{1} x_{2} & \ldots & y_{1} x_{n} \\
y_{2} x_{1} & y_{2} x_{2} & \ldots & y_{2} x_{n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{n} x_{1} & y_{n} x_{2} & \ldots & y_{n} x_{n}
\end{array}\right) .
$$

Example.

$$
\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 2 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 3 & 1 & 1 \\
-2 & 5 & 6 & 0 \\
1 & 7 & 4 & 1
\end{array}\right)=\left(\begin{array}{cccc}
-3 & 1 & 3 & 0 \\
-3 & 17 & 16 & 1
\end{array}\right)
$$

Any system of linear equations can be rewritten as a matrix equation.

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

$\Longleftrightarrow\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right)$

Properties of matrix multiplication:

$(A B) C=A(B C)$
$(A+B) C=A C+B C$
$C(A+B)=C A+C B$
$(r A) B=A(r B)=r(A B)$
(associative law)
(distributive law \#1)
(distributive law \#2)
(Any of the above identities holds provided that matrix sums and products are well defined.)

