MATH 311-504
 Topics in Applied Mathematics

Lecture 8:
 Matrix algebra (continued).

Matrices

Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

Notation: $A=\left(a_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq m}$ or simply $A=\left(a_{i j}\right)$ if the dimensions are known.

Matrix addition

Definition. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $m \times n$ matrices. The sum $A+B$ is defined to be the $m \times n$ matrix $C=\left(c_{i j}\right)$ such that $c_{i j}=a_{i j}+b_{i j}$ for all indices i, j.

That is, two matrices with the same dimensions can be added by adding their corresponding entries.
$\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right)+\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32}\end{array}\right)=\left(\begin{array}{ll}a_{11}+b_{11} & a_{12}+b_{12} \\ a_{21}+b_{21} & a_{22}+b_{22} \\ a_{31}+b_{31} & a_{32}+b_{32}\end{array}\right)$

Scalar multiplication

Definition. Given an $m \times n$ matrix $A=\left(a_{i j}\right)$ and a number r, the scalar multiple $r A$ is defined to be the $m \times n$ matrix $D=\left(d_{i j}\right)$ such that $d_{i j}=r a_{i j}$ for all indices i, j.

That is, to multiply a matrix by a scalar r, one multiplies each entry of the matrix by r.

$$
r\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{lll}
r a_{11} & r a_{12} & r a_{13} \\
r a_{21} & r a_{22} & r a_{23} \\
r a_{31} & r a_{32} & r a_{33}
\end{array}\right)
$$

The $m \times n$ zero matrix (all entries are zeros) is denoted $O_{m n}$ or simply O.

Negative of a matrix: $-A$ is defined as $(-1) A$. Matrix difference: $A-B$ is defined as $A+(-B)$.

As far as the linear operations (addition and scalar multiplication) are concerned, the $m \times n$ matrices
can be regarded as mn-dimensional vectors.

Matrix multiplication

The product of matrices A and B is defined if the number of columns in A matches the number of rows in B.

Definition. Let $A=\left(a_{i k}\right)$ be an $m \times n$ matrix and $B=\left(b_{k j}\right)$ be an $n \times p$ matrix. The product $A B$ is defined to be the $m \times p$ matrix $C=\left(c_{i j}\right)$ such that $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$ for all indices i, j.

That is, matrices are multiplied row by column:

$$
\left(\begin{array}{ccc}
* & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{cc|cc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & *
\end{array}\right)
$$

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\hline a_{21} & a_{22} & \ldots & a_{2 n} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right) \\
& B=\left(\begin{array}{c|c|c|c}
b_{11} & b_{12} & \ldots & b_{1 p} \\
b_{21} & b_{22} & \ldots & b_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n p}
\end{array}\right)=\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{p}\right) \\
& \Longrightarrow A B=\left(\begin{array}{cccc}
\mathbf{v}_{1} \cdot \mathbf{w}_{1} & \mathbf{v}_{1} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{1} \cdot \mathbf{w}_{p} \\
\mathbf{v}_{2} \cdot \mathbf{w}_{1} & \mathbf{v}_{2} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{2} \cdot \mathbf{w}_{p} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{v}_{m} \cdot \mathbf{w}_{1} & \mathbf{v}_{m} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{m} \cdot \mathbf{w}_{p}
\end{array}\right)
\end{aligned}
$$

Any system of linear equations can be represented as a matrix equation:
$\left\{\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\ \cdots \cdots \cdots \\ a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}\end{array} \Longleftrightarrow A \mathbf{x}=\mathbf{b}\right.$,
where
$A=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right)$

Properties of matrix multiplication:
$(A B) C=A(B C)$
$(A+B) C=A C+B C$
$C(A+B)=C A+C B$
$(r A) B=A(r B)=r(A B)$
(associative law)
(distributive law \#1)
(distributive law \#2)

Any of the above identities holds provided that matrix sums and products are well defined.

If A and B are $n \times n$ matrices, then both $A B$ and $B A$ are well defined $n \times n$ matrices. However, in general, $A B \neq B A$.

Example. Let $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right), \quad B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
Then $A B=\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right), \quad B A=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$.

If $A B$ does equal $B A$, we say that the matrices A and B commute.

Problem. Let A and B be arbitrary $n \times n$ matrices.
Is it true that $(A-B)(A+B)=A^{2}-B^{2}$?

$$
\begin{aligned}
(A-B)(A+B) & =(A-B) A+(A-B) B \\
& =(A A-B A)+(A B-B B) \\
& =A^{2}+A B-B A-B^{2}
\end{aligned}
$$

Hence $(A-B)(A+B)=A^{2}-B^{2}$ if and only if A commutes with B.

Diagonal matrices

If $A=\left(a_{i j}\right)$ is a square matrix, then the entries $a_{i i}$ are called diagonal entries. A square matrix is called diagonal if all non-diagonal entries are zeros.

Example. $\left(\begin{array}{lll}7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$, denoted $\operatorname{diag}(7,1,2)$.
Let $A=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right), B=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
Then $A+B=\operatorname{diag}\left(s_{1}+t_{1}, s_{2}+t_{2}, \ldots, s_{n}+t_{n}\right)$,

$$
r A=\operatorname{diag}\left(r s_{1}, r s_{2}, \ldots, r s_{n}\right)
$$

Example.

$$
\left(\begin{array}{lll}
7 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 3
\end{array}\right)=\left(\begin{array}{rrr}
-7 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 6
\end{array}\right)
$$

Theorem Let $A=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, $B=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
Then $A+B=\operatorname{diag}\left(s_{1}+t_{1}, s_{2}+t_{2}, \ldots, s_{n}+t_{n}\right)$,

$$
\begin{gathered}
r A=\operatorname{diag}\left(r s_{1}, r s_{2}, \ldots, r s_{n}\right) \\
A B=\operatorname{diag}\left(s_{1} t_{1}, s_{2} t_{2}, \ldots, s_{n} t_{n}\right) .
\end{gathered}
$$

In particular, diagonal matrices always commute.

Example.
$\left(\begin{array}{lll}7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)=\left(\begin{array}{ccc}7 a_{11} & 7 a_{12} & 7 a_{13} \\ a_{21} & a_{22} & a_{23} \\ 2 a_{31} & 2 a_{32} & 2 a_{33}\end{array}\right)$
Theorem Let $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ and A be an $m \times n$ matrix. Then the matrix $D A$ is obtained from A by multiplying the i th row by d_{i} for $i=1,2, \ldots, m$:

$$
A=\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right) \Longrightarrow D A=\left(\begin{array}{c}
d_{1} \mathbf{v}_{1} \\
d_{2} \mathbf{v}_{2} \\
\vdots \\
d_{m} \mathbf{v}_{m}
\end{array}\right)
$$

Example.

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{lll}
7 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
7 a_{11} & a_{12} & 2 a_{13} \\
7 a_{21} & a_{22} & 2 a_{23} \\
7 a_{31} & a_{32} & 2 a_{33}
\end{array}\right)
$$

Theorem Let $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ and A be an $m \times n$ matrix. Then the matrix $A D$ is obtained from A by multiplying the i th column by d_{i} for $i=1,2, \ldots, n$:

$$
\begin{gathered}
A=\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right) \\
\Longrightarrow \quad A D=\left(d_{1} \mathbf{w}_{1}, d_{2} \mathbf{w}_{2}, \ldots, d_{n} \mathbf{w}_{n}\right)
\end{gathered}
$$

Identity matrix

Definition. The identity matrix (or unit matrix) is a diagonal matrix with all diagonal entries equal to 1 . The $n \times n$ identity matrix is denoted I_{n} or simply I.

$$
I_{1}=(1), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

In general, $\quad I=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right)$.
Theorem. Let A be an arbitrary $m \times n$ matrix.
Then $I_{m} A=A I_{n}=A$.

Matrix polynomials

If B is not a square matrix then $B B$ is not defined.
Definition. Given an n-by- n matrix A, let

$$
\begin{aligned}
& \quad A^{2}=A A, \quad A^{3}=A A A, \ldots, \quad A^{k}=\underbrace{A A \ldots A}_{k \text { times }} \\
& \text { Also, let } A^{1}=A \text { and } A^{0}=I_{n} .
\end{aligned}
$$

Associativity of matrix multiplication implies that all powers A^{k} are well defined and $A^{j} A^{k}=A^{j+k}$ for all $j, k \geq 0$. In particular, all powers of A commute.

Definition. For any polynomial

$$
p(x)=c_{0} x^{m}+c_{1} x^{m-1}+\cdots+c_{m-1} x+c_{m}
$$

let

$$
p(A)=c_{0} A^{m}+c_{1} A^{m-1}+\cdots+c_{m-1} A+c_{m} I_{n} .
$$

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$.
$A^{2}=A A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right)$,
$A^{3}=A^{2} A=\left(\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right)\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}13 & 8 \\ 8 & 5\end{array}\right)$,
$A^{4}=A^{2} A^{2}=\left(\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right)\left(\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right)=\left(\begin{array}{ll}34 & 21 \\ 21 & 13\end{array}\right)$.
By the way, $1,1,2,3,5,8,13,21,34, \ldots$ are famous Fibonacci numbers given by $f_{1}=f_{2}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 3$.

Example. $\quad p(x)=x^{2}-3 x+1, \quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$.

$$
\begin{aligned}
p(A) & =A^{2}-3 A+I=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)^{2}-3\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right)-\left(\begin{array}{ll}
6 & 3 \\
3 & 3
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Thus $A^{2}-3 A+I=0$.

Properties of matrix polynomials

Suppose A is a square matrix, $p(x), p_{1}(x), p_{2}(x)$ are polynomials, and r is a scalar. Then

$$
\begin{array}{ll}
p(x)=p_{1}(x)+p_{2}(x) & \Longrightarrow p(A)=p_{1}(A)+p_{2}(A) \\
p(x)=r p_{1}(x) & \Longrightarrow p(A)=r p_{1}(A) \\
p(x)=p_{1}(x) p_{2}(x) & \Longrightarrow p(A)=p_{1}(A) p_{2}(A) \\
p(x)=p_{1}\left(p_{2}(x)\right) & \Longrightarrow p(A)=p_{1}\left(p_{2}(A)\right)
\end{array}
$$

In particular, matrix polynomials $p_{1}(A)$ and $p_{2}(A)$ always commute.
If $A=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ then

$$
p(A)=\operatorname{diag}\left(p\left(s_{1}\right), p\left(s_{2}\right), \ldots, p\left(s_{n}\right)\right)
$$

Examples.

- $(A-I)(A+I)=A^{2}-I$
- $(A+I)^{2}=A^{2}+2 A+I$
- $(A-I)^{2}=A^{2}-2 A+I$
- $(A+I)^{3}=A^{3}+3 A^{2}+3 A+I$
- $(A-I)^{3}=A^{3}-3 A^{2}+3 A-I$
- $(A-I)\left(A^{2}+A+I\right)=A^{3}-I$
- $(A+I)\left(A^{2}-A+I\right)=A^{3}+I$

Inverse matrix

Let $\mathcal{M}_{n}(\mathbb{R})$ denote the set of all $n \times n$ matrices with real entries. We can add, subtract, and multiply elements of $\mathcal{M}_{n}(\mathbb{R})$. What about division?

Definition. Let $A \in \mathcal{M}_{n}(\mathbb{R})$. Suppose there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n}
$$

Then the matrix A is called invertible and B is called the inverse of A (denoted $\left.A^{-1}\right)$.

$$
A A^{-1}=A^{-1} A=I
$$

