MATH 311-504 Topics in Applied Mathematics Lecture 9: Inverse matrix.

Identity matrix

Definition. The **identity matrix** (or **unit matrix**) is a diagonal matrix with all diagonal entries equal to 1. The $n \times n$ identity matrix is denoted I_n or simply I.

$$I_1 = (1), \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

In general, $I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$

Theorem. Let A be an arbitrary $m \times n$ matrix. Then $I_m A = A I_n = A$.

Inverse matrix

Notation. $\mathcal{M}_n(\mathbb{R})$ denote the set of all $n \times n$ matrices with real entries.

Definition. Let $A \in \mathcal{M}_n(\mathbb{R})$. Suppose there exists an $n \times n$ matrix B such that

$$AB = BA = I_n$$
.

Then the matrix A is called **invertible** and B is called the **inverse** of A (denoted A^{-1}).

$$AA^{-1} = A^{-1}A = I$$

Examples

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$BA = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$C^{2} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
Thus $A^{-1} = B, \quad B^{-1} = A, \text{ and } C^{-1} = C.$

Example.
$$A = \begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}$$
.

In the previous lecture it was shown that $A^2 - 3A + I = O$. Assume that the matrix A is invertible. Then

$$A^{2} - 3A + I = O \implies A^{-1}(A^{2} - 3A + I) = A^{-1}O$$
$$\implies A^{-1}AA - 3A^{-1}A + A^{-1}I = O$$
$$\implies A - 3I + A^{-1} = O \implies A^{-1} = 3I - A$$

The above argument suggests (but **does not prove**) that the matrix $B = 3I - A = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$ is the inverse of A.

And, indeed, $AB = BA = (3I - A)A = 3A - A^2 = I$.

Basic properties of inverse matrices:

• If $B = A^{-1}$ then $A = B^{-1}$. In other words, if A is invertible, so is A^{-1} , and $A = (A^{-1})^{-1}$.

• The inverse matrix (if it exists) is unique. Moreover, if AB = CA = I for some matrices $B, C \in \mathcal{M}_n(\mathbb{R})$ then $B = C = A^{-1}$.

Indeed, B = IB = (CA)B = C(AB) = CI = C.

• If matrices $A, B \in \mathcal{M}_n(\mathbb{R})$ are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I,$$

 $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I.$

• Similarly, $(A_1A_2...A_k)^{-1} = A_k^{-1}...A_2^{-1}A_1^{-1}.$

Other examples

$$D = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $E = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.

$$D^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

It follows that D is not invertible as otherwise $D^2 = O \implies D^{-1}D^2 = D^{-1}O \implies D = O.$

$$E^2 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} = 2E.$$

It follows that E is not invertible as otherwise

$$E^2 = 2E \implies E^2 E^{-1} = 2EE^{-1} \implies E = 2I.$$

Theorem Suppose that *D* and *E* are *n*-by-*n* matrices such that DE = O. Then exactly one of the following is true:

(i)
$$D$$
 is invertible, $E = O$;
(ii) $D = O$, E is invertible;

(iii) neither D nor E is invertible.

Proof: If *D* is invertible then

 $DE = O \implies D^{-1}DE = D^{-1}O \implies E = O.$

If E is invertible then

 $DE = O \implies DEE^{-1} = OE^{-1} \implies D = O.$

It remains to notice that the zero matrix is not invertible.

Inverting diagonal matrices

Theorem A diagonal matrix $D = \text{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$.

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1})$.

Inverting diagonal matrices

Theorem A diagonal matrix $D = \text{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$.

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1})$.

Proof: If all $d_i \neq 0$ then, clearly, $\operatorname{diag}(d_1, \ldots, d_n) \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}) = \operatorname{diag}(1, \ldots, 1) = I$, $\operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}) \operatorname{diag}(d_1, \ldots, d_n) = \operatorname{diag}(1, \ldots, 1) = I$. Now suppose that $d_i = 0$ for some i. Then for any $n \times n$ matrix B the ith row of the matrix DB is a

zero row. Hence $DB \neq I$.

Inverting 2-by-2 matrices

Definition. The **determinant** of a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is det A = ad - bc.

Theorem A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if det $A \neq 0$.

If det $A \neq 0$ then $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$ **Theorem** A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if det $A \neq 0$. If det $A \neq 0$ then $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Proof: Let
$$B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
. Then $AB = BA = \begin{pmatrix} ad-bc & 0 \\ 0 & ad-bc \end{pmatrix} = (ad-bc)I_2.$

In the case det $A \neq 0$, we have $A^{-1} = (\det A)^{-1}B$. In the case det A = 0, the matrices A and B are not invertible because $A = O \iff B = O$.

Fundamental results on inverse matrices

Theorem 1 Given a square matrix *A*, the following are equivalent:

(i) A is invertible;

(ii) $\mathbf{x} = \mathbf{0}$ is the only solution of the matrix equation $A\mathbf{x} = \mathbf{0}$; (iii) the row echelon form of A has no zero rows;

(iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix *A* into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1} .

Theorem 3 For any $n \times n$ matrices A and B,

$$BA = I \iff AB = I.$$

Row echelon form of a square matrix:

noninvertible case

invertible case