MATH 311-504
 Topics in Applied Mathematics

Lecture 9:
 Inverse matrix.

Identity matrix

Definition. The identity matrix (or unit matrix) is a diagonal matrix with all diagonal entries equal to 1 . The $n \times n$ identity matrix is denoted I_{n} or simply I.

$$
I_{1}=(1), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

In general, $\quad I=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right)$.
Theorem. Let A be an arbitrary $m \times n$ matrix.
Then $I_{m} A=A I_{n}=A$.

Inverse matrix

Notation. $\quad \mathcal{M}_{n}(\mathbb{R})$ denote the set of all $n \times n$ matrices with real entries.

Definition. Let $A \in \mathcal{M}_{n}(\mathbb{R})$. Suppose there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n}
$$

Then the matrix A is called invertible and B is called the inverse of A (denoted $\left.A^{-1}\right)$.

$$
A A^{-1}=A^{-1} A=I
$$

Examples

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right), \quad C=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

$$
A B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
B A=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
C^{2}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Thus $A^{-1}=B, B^{-1}=A$, and $C^{-1}=C$.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$.
In the previous lecture it was shown that $A^{2}-3 A+I=0$.
Assume that the matrix A is invertible. Then

$$
\begin{aligned}
& A^{2}-3 A+I=O \Longrightarrow A^{-1}\left(A^{2}-3 A+I\right)=A^{-1} O \\
& \Longrightarrow A^{-1} A A-3 A^{-1} A+A^{-1} I=O \\
& \Longrightarrow A-3 I+A^{-1}=O \Longrightarrow A^{-1}=3 I-A
\end{aligned}
$$

The above argument suggests (but does not prove) that the matrix $B=3 I-A=\left(\begin{array}{rr}1 & -1 \\ -1 & 2\end{array}\right)$ is the inverse of A.
And, indeed, $A B=B A=(3 I-A) A=3 A-A^{2}=I$.

Basic properties of inverse matrices:

- If $B=A^{-1}$ then $A=B^{-1}$. In other words, if A is invertible, so is A^{-1}, and $A=\left(A^{-1}\right)^{-1}$.
- The inverse matrix (if it exists) is unique. Moreover, if $A B=C A=I$ for some matrices $B, C \in \mathcal{M}_{n}(\mathbb{R})$ then $B=C=A^{-1}$. Indeed, $B=I B=(C A) B=C(A B)=C I=C$.
- If matrices $A, B \in \mathcal{M}_{n}(\mathbb{R})$ are invertible, so is $A B$, and $(A B)^{-1}=B^{-1} A^{-1}$.

$$
\begin{aligned}
\left(B^{-1} A^{-1}\right)(A B) & =B^{-1}\left(A^{-1} A\right) B=B^{-1} I B=B^{-1} B=I, \\
(A B)\left(B^{-1} A^{-1}\right) & =A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I .
\end{aligned}
$$

- Similarly, $\left(A_{1} A_{2} \ldots A_{k}\right)^{-1}=A_{k}^{-1} \ldots A_{2}^{-1} A_{1}^{-1}$.

Other examples

$$
D=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad E=\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

$$
D^{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

It follows that D is not invertible as otherwise

$$
\begin{gathered}
D^{2}=O \Longrightarrow D^{-1} D^{2}=D^{-1} O \Longrightarrow D=O \\
E^{2}=\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{rr}
2 & -2 \\
-2 & 2
\end{array}\right)=2 E
\end{gathered}
$$

It follows that E is not invertible as otherwise

$$
E^{2}=2 E \Longrightarrow E^{2} E^{-1}=2 E E^{-1} \Longrightarrow E=2 I .
$$

Theorem Suppose that D and E are n-by- n matrices such that $D E=O$. Then exactly one of the following is true:
(i) D is invertible, $E=O$;
(ii) $D=O, E$ is invertible;
(iii) neither D nor E is invertible.

Proof: If D is invertible then

$$
D E=O \Longrightarrow D^{-1} D E=D^{-1} O \Longrightarrow E=O
$$

If E is invertible then

$$
D E=O \Longrightarrow D E E^{-1}=O E^{-1} \Longrightarrow D=O
$$

It remains to notice that the zero matrix is not invertible.

Inverting diagonal matrices

Theorem A diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is invertible if and only if all diagonal entries are nonzero: $d_{i} \neq 0$ for $1 \leq i \leq n$.
If D is invertible then $D^{-1}=\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)$.

$$
\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
d_{1}^{-1} & 0 & \ldots & 0 \\
0 & d_{2}^{-1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}^{-1}
\end{array}\right)
$$

Inverting diagonal matrices

Theorem A diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is invertible if and only if all diagonal entries are nonzero: $d_{i} \neq 0$ for $1 \leq i \leq n$.
If D is invertible then $D^{-1}=\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)$.
Proof: If all $d_{i} \neq 0$ then, clearly, $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)=\operatorname{diag}(1, \ldots, 1)=I$, $\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right) \operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)=\operatorname{diag}(1, \ldots, 1)=I$.

Now suppose that $d_{i}=0$ for some i. Then for any $n \times n$ matrix B the i th row of the matrix $D B$ is a zero row. Hence $D B \neq 1$.

Inverting 2-by-2 matrices

Definition. The determinant of a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\operatorname{det} A=a d-b c$.

Theorem A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $\operatorname{det} A \neq 0$.

If $\operatorname{det} A \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)
$$

Theorem A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $\operatorname{det} A \neq 0$. If $\operatorname{det} A \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)
$$

Proof: Let $B=\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)$. Then

$$
A B=B A=\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right)=(a d-b c) \iota_{2} .
$$

In the case $\operatorname{det} A \neq 0$, we have $A^{-1}=(\operatorname{det} A)^{-1} B$. In the case $\operatorname{det} A=0$, the matrices A and B are not invertible because $A=O \Longleftrightarrow B=O$.

Fundamental results on inverse matrices

Theorem 1 Given a square matrix A, the following are equivalent:
(i) A is invertible;
(ii) $\mathbf{x}=\mathbf{0}$ is the only solution of the matrix equation $A \mathbf{x}=\mathbf{0}$;
(iii) the row echelon form of A has no zero rows;
(iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1}.

Theorem 3 For any $n \times n$ matrices A and B,

$$
B A=I \Longleftrightarrow A B=I
$$

Row echelon form of a square matrix:

noninvertible case
invertible case

