Test 1

Problem 1 (25 pts.) Let ℓ_{0} be the line in \mathbb{R}^{3} passing through the point $\mathbf{a}=(1,1,0)$ in the direction $\mathbf{v}=(1,1,1)$. Let Π be the plane in \mathbb{R}^{3} passing through the line ℓ_{0} and the point $\mathbf{b}=(0,1,1)$. Let ℓ be the line in \mathbb{R}^{3} passing through the points $\mathbf{c}=(1,0,1)$ and $\mathbf{d}=(2,0,2)$.
(i) Find a parametric representation for the line ℓ.
(ii) Find a parametric representation for the plane Π.
(iii) Find an equation for the plane Π.
(iv) Find the point where the line ℓ intersects the plane Π.
(v) Find the angle between the line ℓ and the plane Π.
(vi) Find the distance from the point $(1,1,1)$ to the plane Π.

Problem $2(15$ pts.) Find a quadratic polynomial $p(x)$ such that $p(-1)=1, p(2)=-2$, and $p(3)=1$.

Problem 3 (20 pts.) Let $A=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & -1 & 2 & 1\end{array}\right)$. Find the inverse matrix A^{-1}.

Problem 4 (20 pts.) Let A be the same matrix as in Problem 3. Evaluate the following determinants:
(i) $\operatorname{det} A$;
(ii) $\operatorname{det}(A-I)$;
(iii) $\operatorname{det}(2 A)$.

Bonus Problem 5 (20 pts.) Let $\mathbf{v}_{1}=(1,1,0), \mathbf{v}_{2}=(0,1,1), \mathbf{v}_{3}=(1,1,1)$, and $\mathbf{v}_{4}=(0,1,0)$. Determine which of the following sets of vectors are linearly independent:
(i) $\mathbf{v}_{1}, \mathbf{v}_{2}$;
(ii) $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$;
(iii) $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$.

