Sample problems for Test 1: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (25 pts.) Let Π be the plane in \mathbb{R}^3 passing through the points (2,0,0), (1,1,0), and (-3,0,2). Let ℓ be the line in \mathbb{R}^3 passing through the point (1,1,1) in the direction (2,2,2).

(i) Find a parametric representation for the line ℓ .

t(2,2,2) + (1,1,1). Since the line ℓ passes through the origin (t = -1/2), an equivalent representation is s(2,2,2).

(ii) Find a parametric representation for the plane Π .

Since the plane Π contains the points $\mathbf{a} = (2,0,0)$, $\mathbf{b} = (1,1,0)$, and $\mathbf{c} = (-3,0,2)$, the vectors $\mathbf{b} - \mathbf{a} = (-1,1,0)$ and $\mathbf{c} - \mathbf{a} = (-5,0,2)$ are parallel to Π . Clearly, $\mathbf{b} - \mathbf{a}$ is not parallel to $\mathbf{c} - \mathbf{a}$. Hence a parametric representation $t_1(\mathbf{b} - \mathbf{a}) + t_2(\mathbf{c} - \mathbf{a}) + \mathbf{a} = t_1(-1,1,0) + t_2(-5,0,2) + (2,0,0)$.

(iii) Find an equation for the plane Π .

Since the vectors $\mathbf{b} - \mathbf{a} = (-1, 1, 0)$ and $\mathbf{c} - \mathbf{a} = (-5, 0, 2)$ are parallel to the plane Π , their cross product $\mathbf{p} = (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a})$ is orthogonal to Π . We have that

$$\mathbf{p} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 1 & 0 \\ -5 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} -1 & 0 \\ -5 & 2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} -1 & 1 \\ -5 & 0 \end{vmatrix} \mathbf{k} = 2\mathbf{i} + 2\mathbf{j} + 5\mathbf{k} = (2, 2, 5).$$

A point $\mathbf{x} = (x, y, z)$ is in the plane Π if and only if $\mathbf{p} \cdot (\mathbf{x} - \mathbf{a}) = 0$. This is an equation for the plane. In coordinate form, 2(x - 2) + 2y + 5z = 0 or 2x + 2y + 5z = 4.

(iv) Find the point where the line ℓ intersects the plane Π .

Let **x** be the point of intersection. Then $\mathbf{x} = t_1(-1, 1, 0) + t_2(-5, 0, 2) + (2, 0, 0)$ for some $t_1, t_2 \in \mathbb{R}$ and also $\mathbf{x} = s(2, 2, 2)$ for some $s \in \mathbb{R}$. It follows that

$$\begin{cases} -t_1 - 5t_2 + 2 = 2s, \\ t_1 = 2s, \\ 2t_2 = 2s. \end{cases}$$

Solving this system of linear equations, we obtain that $t_1 = 4/9$, $t_2 = s = 2/9$. Hence $\mathbf{x} = s(2, 2, 2) = (4/9, 4/9, 4/9)$.

(v) Find the angle between the line ℓ and the plane Π .

Let ϕ denote the angle between the vectors $\mathbf{v} = (2, 2, 2)$ and $\mathbf{p} = (2, 2, 5)$. Then

$$\cos\phi = \frac{\mathbf{v} \cdot \mathbf{p}}{|\mathbf{v}| |\mathbf{p}|} = \frac{2 \cdot 2 + 2 \cdot 2 + 2 \cdot 5}{\sqrt{2^2 + 2^2 + 2^2} \sqrt{2^2 + 2^2 + 5^2}} = \frac{18}{\sqrt{12}\sqrt{33}} = \frac{3}{\sqrt{11}}.$$

Note that $0 < \phi < \pi/2$ as $\cos \phi > 0$. Since the vector **v** is parallel to the line ℓ while the vector **p** is orthogonal to the plane Π , the angle between ℓ and Π is equal to

$$\frac{\pi}{2} - \phi = \frac{\pi}{2} - \arccos \frac{3}{\sqrt{11}} = \arcsin \frac{3}{\sqrt{11}}.$$

(vi) Find the distance from the origin to the plane Π .

The plane Π can be defined by the equation 2x + 2y + 5z = 4. Hence the distance from a point (x_0, y_0, z_0) to Π is equal to

$$\frac{|2x_0 + 2y_0 + 5z_0 - 4|}{\sqrt{2^2 + 2^2 + 5^2}} = \frac{|2x_0 + 2y_0 + 5z_0 - 4|}{\sqrt{33}}$$

In particular, the distance from the origin to the plane is equal to $\frac{4}{\sqrt{33}}$.

Problem 2 (15 pts.) Let $f(x) = a \cos 2x + b \cos x + c$. Find *a*, *b*, and *c* so that f(0) = 0, f''(0) = 2, and f'''(0) = 10.

 $f''(x) = -4a\cos 2x - b\cos x$, $f'''(x) = 16a\cos 2x + b\cos x$. Therefore f(0) = a + b + c, f''(0) = -4a - b, f'''(0) = 16a + b. The desired parameters satisfy a system of linear equations

$$\begin{cases} a+b+c = 0, \\ -4a-b = 2, \\ 16a+b = 10. \end{cases}$$

To solve the system, add the second equation to the third one, then obtain the solution by back substitution:

$$\begin{cases} a+b+c=0\\ -4a-b=2\\ 16a+b=10 \end{cases} \iff \begin{cases} a+b+c=0\\ -4a-b=2\\ 12a=12 \end{cases} \iff \begin{cases} a+b+c=0\\ -4a-b=2\\ a=1 \end{cases} \iff \begin{cases} a+b+c=0\\ b=-6\\ a=1 \end{cases} \iff \begin{cases} c=5\\ b=-6\\ a=1 \end{cases}$$

Thus $f(x) = \cos 2x - 6\cos x + 5$.

Problem 3 (20 pts.) Let
$$A = \begin{pmatrix} 0 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
. Find the inverse matrix A^{-1} .

First we merge the matrix A with the identity matrix into one 4×8 matrix

$$(A | I) = \begin{pmatrix} 0 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix.

Interchange the first row with the fourth row:

$$\begin{pmatrix} 0 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 2 & 3 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 1 & | & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1 \\ 2 & 3 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 1 & | & 0 & 0 & 0 & 1 \\ 0 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \end{pmatrix}.$$

Subtract 2 times the first row from the second row:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 3 & 2 & -2 & 0 & 1 & 0 & -2 \\ 1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Subtract the first row from the third row:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 3 & 2 & -2 & 0 & 1 & 0 & -2 \\ 1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 3 & 2 & -2 & 0 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

At this point, it is convenient to add the fourth row to the second row (rather than divide the second row by 3):

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 3 & 2 & -2 & 0 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

Add 2 times the second row to the fourth row:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 16 & -1 & 3 & 2 & 0 & -4 \end{pmatrix}.$$

Add 16 times the third row to the fourth row:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 16 & -1 & 3 & 2 & 0 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 3 & 2 & 16 & -20 \end{pmatrix}.$$

Multiply the third and the fourth rows by -1:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 3 & 2 & 16 & -20 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -3 & -2 & -16 & 20 \end{pmatrix}.$$

Add the fourth row to the second row:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -3 & -2 & -16 & 20 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 6 & 0 & -2 & -1 & -16 & 18 \\ 0 & 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -3 & -2 & -16 & 20 \end{pmatrix}.$$

Subtract the fourth row from the first row:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 6 & 0 & -2 & -1 & -16 & 18 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -3 & -2 & -16 & 20 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\ 0 & 1 & 6 & 0 & -2 & -1 & -16 & 18 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -3 & -2 & -16 & 20 \end{pmatrix}$$

Subtract 6 times the third row from the second row:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & | & 3 & 2 & 16 & -19 \\ 0 & 1 & 6 & 0 & | & -2 & -1 & -16 & 18 \\ 0 & 0 & 1 & 0 & | & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & | & -3 & -2 & -16 & 20 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & | & 3 & 2 & 16 & -19 \\ 0 & 1 & 0 & 0 & | & -2 & -1 & -10 & 12 \\ 0 & 0 & 1 & 0 & | & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & | & -3 & -2 & -16 & 20 \end{pmatrix}$$

Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of A. Thus

$$A^{-1} = \begin{pmatrix} 0 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & 2 & 16 & -19 \\ -2 & -1 & -10 & 12 \\ 0 & 0 & -1 & 1 \\ -3 & -2 & -16 & 20 \end{pmatrix}$$

Problem 4 (20 pts.) Evaluate the following determinants:

(i) $\begin{vmatrix} 0 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & 0 & 0 & 1 \end{vmatrix}$.

Let A denote the above matrix. In the solution of Problem 3, the matrix A has been transformed into the identity matrix using elementary row operations. The latter included one row exchange and two row multiplications, each time by -1. It follows that det $I = -(-1)^2 \det A$. Therefore det $A = - \det I = -1$.

(ii)
$$\begin{vmatrix} 2 & -2 & 0 & 3 \\ -5 & 3 & 2 & 1 \\ 1 & -1 & 0 & -3 \\ 2 & 0 & 0 & -1 \end{vmatrix}$$
.

Expand the determinant by the third column:

$$\begin{vmatrix} 2 & -2 & 0 & 3 \\ -5 & 3 & 2 & 1 \\ 1 & -1 & 0 & -3 \\ 2 & 0 & 0 & -1 \end{vmatrix} = -2 \begin{vmatrix} 2 & -2 & 3 \\ 1 & -1 & -3 \\ 2 & 0 & -1 \end{vmatrix}.$$

Subtract 2 times the second row from the first row:

Expand the determinant by the first row:

$$-2 \begin{vmatrix} 0 & 0 & 9 \\ 1 & -1 & -3 \\ 2 & 0 & -1 \end{vmatrix} = -2 \cdot 9 \begin{vmatrix} 1 & -1 \\ 2 & 0 \end{vmatrix}.$$

Finally,

$$\begin{vmatrix} 2 & -2 & 0 & 3 \\ -5 & 3 & 2 & 1 \\ 1 & -1 & 0 & -3 \\ 2 & 0 & 0 & -1 \end{vmatrix} = -18 \begin{vmatrix} 1 & -1 \\ 2 & 0 \end{vmatrix} = -18 \cdot 2 = -36.$$

Bonus Problem 5 (15 pts.) Find the volume of the tetrahedron with vertices at the points $\mathbf{a} = (1, 0, 0)$, $\mathbf{b} = (0, 1, 0)$, $\mathbf{c} = (0, 0, 1)$, and $\mathbf{d} = (2, 3, 5)$.

The vectors $\mathbf{x} = \mathbf{b} - \mathbf{a} = (-1, 1, 0)$, $\mathbf{y} = \mathbf{c} - \mathbf{a} = (-1, 0, 1)$, and $\mathbf{z} = \mathbf{d} - \mathbf{a} = (1, 3, 5)$ are represented by adjacent edges of the tetrahedron. The volume of a parallelepiped with such adjacent edges equals $|\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})|$. The volume of the tetrahedron is 1/6 of the volume of the parallelepiped.

We have

$$\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z}) = \begin{vmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 3 & 5 \end{vmatrix} = (-1) \begin{vmatrix} 0 & 1 \\ 3 & 5 \end{vmatrix} - 1 \begin{vmatrix} -1 & 1 \\ 1 & 5 \end{vmatrix} = (-1)(-3) - 1(-6) = 9.$$

Thus the volume of the tetrahedron is $\frac{1}{6} |\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})| = \frac{1}{6} \cdot 9 = 1.5$.