Sample problems for Test 1: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 ($\mathbf{2 5}$ pts.) Let Π be the plane in \mathbb{R}^{3} passing through the points $(2,0,0)$, $(1,1,0)$, and $(-3,0,2)$. Let ℓ be the line in \mathbb{R}^{3} passing through the point $(1,1,1)$ in the direction (2,2,2).
(i) Find a parametric representation for the line ℓ.
$t(2,2,2)+(1,1,1)$. Since the line ℓ passes through the origin $(t=-1 / 2)$, an equivalent representation is $s(2,2,2)$.
(ii) Find a parametric representation for the plane Π.

Since the plane Π contains the points $\mathbf{a}=(2,0,0), \mathbf{b}=(1,1,0)$, and $\mathbf{c}=(-3,0,2)$, the vectors $\mathbf{b}-\mathbf{a}=(-1,1,0)$ and $\mathbf{c}-\mathbf{a}=(-5,0,2)$ are parallel to Π. Clearly, $\mathbf{b}-\mathbf{a}$ is not parallel to $\mathbf{c}-\mathbf{a}$. Hence a parametric representation $t_{1}(\mathbf{b}-\mathbf{a})+t_{2}(\mathbf{c}-\mathbf{a})+\mathbf{a}=t_{1}(-1,1,0)+t_{2}(-5,0,2)+(2,0,0)$.
(iii) Find an equation for the plane Π.

Since the vectors $\mathbf{b}-\mathbf{a}=(-1,1,0)$ and $\mathbf{c}-\mathbf{a}=(-5,0,2)$ are parallel to the plane Π, their cross product $\mathbf{p}=(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})$ is orthogonal to Π. We have that

$$
\mathbf{p}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 1 & 0 \\
-5 & 0 & 2
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
-1 & 0 \\
-5 & 2
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
-1 & 1 \\
-5 & 0
\end{array}\right| \mathbf{k}=2 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k}=(2,2,5) .
$$

A point $\mathbf{x}=(x, y, z)$ is in the plane Π if and only if $\mathbf{p} \cdot(\mathbf{x}-\mathbf{a})=0$. This is an equation for the plane. In coordinate form, $2(x-2)+2 y+5 z=0$ or $2 x+2 y+5 z=4$.
(iv) Find the point where the line ℓ intersects the plane Π.

Let \mathbf{x} be the point of intersection. Then $\mathbf{x}=t_{1}(-1,1,0)+t_{2}(-5,0,2)+(2,0,0)$ for some $t_{1}, t_{2} \in \mathbb{R}$ and also $\mathbf{x}=s(2,2,2)$ for some $s \in \mathbb{R}$. It follows that

$$
\left\{\begin{array}{l}
-t_{1}-5 t_{2}+2=2 s \\
t_{1}=2 s \\
2 t_{2}=2 s
\end{array}\right.
$$

Solving this system of linear equations, we obtain that $t_{1}=4 / 9, t_{2}=s=2 / 9$. Hence $\mathbf{x}=s(2,2,2)=$ (4/9, 4/9, 4/9).
(v) Find the angle between the line ℓ and the plane Π.

Let ϕ denote the angle between the vectors $\mathbf{v}=(2,2,2)$ and $\mathbf{p}=(2,2,5)$. Then

$$
\cos \phi=\frac{\mathbf{v} \cdot \mathbf{p}}{|\mathbf{v}||\mathbf{p}|}=\frac{2 \cdot 2+2 \cdot 2+2 \cdot 5}{\sqrt{2^{2}+2^{2}+2^{2}} \sqrt{2^{2}+2^{2}+5^{2}}}=\frac{18}{\sqrt{12} \sqrt{33}}=\frac{3}{\sqrt{11}}
$$

Note that $0<\phi<\pi / 2$ as $\cos \phi>0$. Since the vector \mathbf{v} is parallel to the line ℓ while the vector \mathbf{p} is orthogonal to the plane Π, the angle between ℓ and Π is equal to

$$
\frac{\pi}{2}-\phi=\frac{\pi}{2}-\arccos \frac{3}{\sqrt{11}}=\arcsin \frac{3}{\sqrt{11}}
$$

(vi) Find the distance from the origin to the plane Π.

The plane Π can be defined by the equation $2 x+2 y+5 z=4$. Hence the distance from a point $\left(x_{0}, y_{0}, z_{0}\right)$ to Π is equal to

$$
\frac{\left|2 x_{0}+2 y_{0}+5 z_{0}-4\right|}{\sqrt{2^{2}+2^{2}+5^{2}}}=\frac{\left|2 x_{0}+2 y_{0}+5 z_{0}-4\right|}{\sqrt{33}} .
$$

In particular, the distance from the origin to the plane is equal to $\frac{4}{\sqrt{33}}$.

Problem $2(15$ pts.) Let $f(x)=a \cos 2 x+b \cos x+c$. Find a, b, and c so that $f(0)=0$, $f^{\prime \prime}(0)=2$, and $f^{\prime \prime \prime \prime}(0)=10$.
$f^{\prime \prime}(x)=-4 a \cos 2 x-b \cos x, f^{\prime \prime \prime \prime}(x)=16 a \cos 2 x+b \cos x$. Therefore $f(0)=a+b+c, f^{\prime \prime}(0)=$ $-4 a-b, f^{\prime \prime \prime \prime}(0)=16 a+b$. The desired parameters satisfy a system of linear equations

$$
\left\{\begin{array}{l}
a+b+c=0 \\
-4 a-b=2 \\
16 a+b=10
\end{array}\right.
$$

To solve the system, add the second equation to the third one, then obtain the solution by back substitution:

$$
\left\{\begin{array} { l }
{ a + b + c = 0 } \\
{ - 4 a - b = 2 } \\
{ 1 6 a + b = 1 0 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ a + b + c = 0 } \\
{ - 4 a - b = 2 } \\
{ 1 2 a = 1 2 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ a + b + c = 0 } \\
{ - 4 a - b = 2 } \\
{ a = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ a + b + c = 0 } \\
{ b = - 6 } \\
{ a = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
c=5 \\
b=-6 \\
a=1
\end{array}\right.\right.\right.\right.\right.
$$

Thus $f(x)=\cos 2 x-6 \cos x+5$.
Problem $3\left(20 \mathrm{pts}\right.$.) Let $A=\left(\begin{array}{rrrr}0 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$. Find the inverse matrix A^{-1}.
First we merge the matrix A with the identity matrix into one 4×8 matrix

$$
(A \mid I)=\left(\begin{array}{rrrr|rrrr}
0 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix.

Interchange the first row with the fourth row:

$$
\left(\begin{array}{rrrr|rrrr}
0 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
0 & -2 & 4 & 1 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

Subtract 2 times the first row from the second row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
0 & -2 & 4 & 1 & 1 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 3 & 2 & -2 & 0 & 1 & 0 & -2 \\
1 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
0 & -2 & 4 & 1 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

Subtract the first row from the third row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 3 & 2 & -2 & 0 & 1 & 0 & -2 \\
1 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
0 & -2 & 4 & 1 & 1 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 3 & 2 & -2 & 0 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & -2 & 4 & 1 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

At this point, it is convenient to add the fourth row to the second row (rather than divide the second row by 3):

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 3 & 2 & -2 & 0 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & -2 & 4 & 1 & 1 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & -2 & 4 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Add 2 times the second row to the fourth row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & -2 & 4 & 1 & 1 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 16 & -1 & 3 & 2 & 0 & -4
\end{array}\right)
$$

Add 16 times the third row to the fourth row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 16 & -1 & 3 & 2 & 0 & -4
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 3 & 2 & 16 & -20
\end{array}\right) .
$$

Multiply the third and the fourth rows by -1 :

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 3 & 2 & 16 & -20
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -3 & -2 & -16 & 20
\end{array}\right) .
$$

Add the fourth row to the second row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -3 & -2 & -16 & 20
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & 0 & -2 & -1 & -16 & 18 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -3 & -2 & -16 & 20
\end{array}\right) .
$$

Subtract the fourth row from the first row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & 0 & -2 & -1 & -16 & 18 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -3 & -2 & -16 & 20
\end{array}\right) \rightarrow\left(\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 6 & 0 & -2 & -1 & -16 & 18 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -3 & -2 & -16 & 20
\end{array}\right)
$$

Subtract 6 times the third row from the second row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 6 & 0 & -2 & -1 & -16 & 18 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -3 & -2 & -16 & 20
\end{array}\right) \rightarrow\left(\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -3 & -2 & -16 & 20
\end{array}\right) .
$$

Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of A. Thus

$$
A^{-1}=\left(\begin{array}{rrrr}
0 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
1 & 0 & -1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{rrrr}
3 & 2 & 16 & -19 \\
-2 & -1 & -10 & 12 \\
0 & 0 & -1 & 1 \\
-3 & -2 & -16 & 20
\end{array}\right)
$$

Problem 4 (20 pts.) Evaluate the following determinants:
(i) $\left|\begin{array}{rrrr}0 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right|$.

Let A denote the above matrix. In the solution of Problem 3 , the matrix A has been transformed into the identity matrix using elementary row operations. The latter included one row exchange and two row multiplications, each time by -1 . It follows that $\operatorname{det} I=-(-1)^{2} \operatorname{det} A$. Therefore $\operatorname{det} A=-\operatorname{det} I=-1$.
(ii) $\left|\begin{array}{rrrr}2 & -2 & 0 & 3 \\ -5 & 3 & 2 & 1 \\ 1 & -1 & 0 & -3 \\ 2 & 0 & 0 & -1\end{array}\right|$.

Expand the determinant by the third column:

$$
\left|\begin{array}{rrrr}
2 & -2 & 0 & 3 \\
-5 & 3 & 2 & 1 \\
1 & -1 & 0 & -3 \\
2 & 0 & 0 & -1
\end{array}\right|=-2\left|\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|
$$

Subtract 2 times the second row from the first row:

$$
-2\left|\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|=-2\left|\begin{array}{rrr}
0 & 0 & 9 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|
$$

Expand the determinant by the first row:

$$
-2\left|\begin{array}{rrr}
0 & 0 & 9 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|=-2 \cdot 9\left|\begin{array}{rr}
1 & -1 \\
2 & 0
\end{array}\right| .
$$

Finally,

$$
\left|\begin{array}{rrrr}
2 & -2 & 0 & 3 \\
-5 & 3 & 2 & 1 \\
1 & -1 & 0 & -3 \\
2 & 0 & 0 & -1
\end{array}\right|=-18\left|\begin{array}{rr}
1 & -1 \\
2 & 0
\end{array}\right|=-18 \cdot 2=-36 .
$$

Bonus Problem 5 ($\mathbf{1 5}$ pts.) Find the volume of the tetrahedron with vertices at the points $\mathbf{a}=(1,0,0), \mathbf{b}=(0,1,0), \mathbf{c}=(0,0,1)$, and $\mathbf{d}=(2,3,5)$.

The vectors $\mathbf{x}=\mathbf{b}-\mathbf{a}=(-1,1,0), \mathbf{y}=\mathbf{c}-\mathbf{a}=(-1,0,1)$, and $\mathbf{z}=\mathbf{d}-\mathbf{a}=(1,3,5)$ are represented by adjacent edges of the tetrahedron. The volume of a parallelepiped with such adjacent edges equals $|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|$. The volume of the tetrahedron is $1 / 6$ of the volume of the parallelepiped.

We have

$$
\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})=\left|\begin{array}{rrr}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 3 & 5
\end{array}\right|=(-1)\left|\begin{array}{ll}
0 & 1 \\
3 & 5
\end{array}\right|-1\left|\begin{array}{rr}
-1 & 1 \\
1 & 5
\end{array}\right|=(-1)(-3)-1(-6)=9 .
$$

Thus the volume of the tetrahedron is $\frac{1}{6}|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|=\frac{1}{6} \cdot 9=1.5$.

