Test 1: Solutions

Problem $1(25 \mathrm{pts}$.$) \quad Let \ell_{0}$ be the line in \mathbb{R}^{3} passing through the point $\mathbf{a}=(1,1,0)$ in the direction $\mathbf{v}=(1,1,1)$. Let Π be the plane in \mathbb{R}^{3} passing through the line ℓ_{0} and the point $\mathbf{b}=(0,1,1)$. Let ℓ be the line in \mathbb{R}^{3} passing through the points $\mathbf{c}=(1,0,1)$ and $\mathbf{d}=(2,0,2)$.
(i) Find a parametric representation for the line ℓ.

Solution: $s(1,0,1)$.
Since the points \mathbf{c} and \mathbf{d} lie on the line ℓ, the vector $\mathbf{d}-\mathbf{c}=(1,0,1)$ is parallel to ℓ. Hence a parametric representation $t(\mathbf{d}-\mathbf{c})+\mathbf{c}=t(1,0,1)+(1,0,1)$. Note that the line ℓ passes through the origin (take $t=-1$). Therefore an equivalent representation is $s(1,0,1)$.
(ii) Find a parametric representation for the plane Π.

Solution: $t_{1}(1,1,1)+t_{2}(-1,0,1)+(1,1,0)$.
We know that the vector \mathbf{v} is parallel to Π. Besides, the plane contains the points \mathbf{a} and \mathbf{b} so that the vector $\mathbf{b}-\mathbf{a}$ is also parallel to Π. Clearly, the vectors $\mathbf{v}=(1,1,1)$ and $\mathbf{b}-\mathbf{a}=(-1,0,1)$ are not parallel to each other. This leads to a parametric representation $t_{1} \mathbf{v}+t_{2}(\mathbf{b}-\mathbf{a})+\mathbf{a}=$ $t_{1}(1,1,1)+t_{2}(-1,0,1)+(1,1,0)$.
(iii) Find an equation for the plane Π.

Solution: $x-2 y+z=-1$.
Since the vectors $\mathbf{v}=(1,1,1)$ and $\mathbf{b}-\mathbf{a}=(-1,0,1)$ are parallel to the plane Π, their cross product $\mathbf{p}=\mathbf{v} \times(\mathbf{b}-\mathbf{a})$ is orthogonal to Π. We have that

$$
\mathbf{p}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 1 \\
-1 & 0 & 1
\end{array}\right|=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right| \mathbf{k}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}=(1,-2,1) .
$$

A point $\mathbf{x}=(x, y, z)$ is in the plane Π if and only if $\mathbf{p} \cdot(\mathbf{x}-\mathbf{a})=0$. This is an equation for the plane. In coordinate form, $(x-1)-2(y-1)+z=0$ or $x-2 y+z=-1$.
(iv) Find the point where the line ℓ intersects the plane Π.

Solution: $\quad(-1 / 2,0,-1 / 2)$.
Let $\mathbf{x}=(x, y, z)$ be the point of intersection. Then $\mathbf{x}=s(1,0,1)$ for some $s \in \mathbb{R}$ and also $x-2 y+z=-1$. Both conditions are satisfied if and only if $s=-1 / 2$. Hence $\mathbf{x}=(-1 / 2,0,-1 / 2)$.
(v) Find the angle between the line ℓ and the plane Π.

Solution: $\quad \arcsin \frac{1}{\sqrt{3}}$.
Let ϕ denote the angle between the vectors $\mathbf{d}-\mathbf{c}=(1,0,1)$ and $\mathbf{p}=(1,-2,1)$. Then

$$
\cos \phi=\frac{(\mathbf{d}-\mathbf{c}) \cdot \mathbf{p}}{|\mathbf{d}-\mathbf{c}||\mathbf{p}|}=\frac{1 \cdot 1+0 \cdot(-2)+1 \cdot 1}{\sqrt{1^{2}+0^{2}+1^{2}} \sqrt{1^{2}+(-2)^{2}+1^{2}}}=\frac{2}{\sqrt{2} \sqrt{6}}=\frac{1}{\sqrt{3}} .
$$

Note that $0<\phi<\pi / 2$ as $\cos \phi>0$. Since the vector $\mathbf{d}-\mathbf{c}$ is parallel to the line ℓ while the vector \mathbf{p} is orthogonal to the plane Π, the angle between ℓ and Π is equal to

$$
\frac{\pi}{2}-\phi=\frac{\pi}{2}-\arccos \frac{1}{\sqrt{3}}=\arcsin \frac{1}{\sqrt{3}}
$$

(vi) Find the distance from the point $(1,1,1)$ to the plane Π.

Solution: $\frac{1}{\sqrt{6}}$.
The plane Π can be defined by the equation $x-2 y+z=-1$. Hence the distance from a point $\left(x_{0}, y_{0}, z_{0}\right)$ to Π is equal to

$$
\frac{\left|x_{0}-2 y_{0}+z_{0}+1\right|}{\sqrt{1^{2}+(-2)^{2}+1^{2}}}=\frac{\left|x_{0}-2 y_{0}+z_{0}+1\right|}{\sqrt{6}} .
$$

In particular, the distance from the point $(1,1,1)$ to the plane is equal to $\frac{1}{\sqrt{6}}$.
Problem $2(15$ pts.) Find a quadratic polynomial $p(x)$ such that $p(-1)=1, p(2)=-2$, and $p(3)=1$.

Solution: $\quad p(x)=x^{2}-2 x-2$.
Let $p(x)=a x^{2}+b x+c$, where a, b, c are unknown coefficients. Then $p(-1)=a-b+c, p(2)=$ $4 a+2 b+c$, and $p(3)=9 a+3 b+c$. The coefficients a, b, and c are to be chosen so that

$$
\left\{\begin{array}{l}
a-b+c=1, \\
4 a+2 b+c=-2, \\
9 a+3 b+c=1 .
\end{array}\right.
$$

We solve this system of linear equations using elementary operations:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ a - b + c = 1 } \\
{ 4 a + 2 b + c = - 2 } \\
{ 9 a + 3 b + c = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ a - b + c = 1 } \\
{ 3 a + 3 b = - 3 } \\
{ 9 a + 3 b + c = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ a - b + c = 1 } \\
{ 3 a + 3 b = - 3 } \\
{ 8 a + 4 b = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a-b+c=1 \\
a+b=-1 \\
2 a+b=0
\end{array}\right.\right.\right.\right. \\
& \Longleftrightarrow\left\{\begin{array} { l }
{ a - b + c = 1 } \\
{ a + b = - 1 } \\
{ a = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ a - b + c = 1 } \\
{ b = - 2 } \\
{ a = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
c=-2 \\
b=-2 \\
a=1
\end{array}\right.\right.\right.
\end{aligned}
$$

Thus the desired polynomial is $p(x)=x^{2}-2 x-2$.
Problem 3 (20 pts.) Let $A=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & -1 & 2 & 1\end{array}\right)$. Find the inverse matrix A^{-1}.
Solution: $A^{-1}=\left(\begin{array}{rrrr}-2 & 3 & 1 & 2 \\ 2 & -2 & -1 & -2 \\ 1 & -1 & -1 & -1 \\ 0 & 0 & 1 & 1\end{array}\right)$.

First we merge the matrix A with the identity matrix into one 4×8 matrix

$$
(A \mid I)=\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & -1 & 2 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix.

Subtract the first row from the second row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & -1 & 2 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & -1 & 2 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Interchange the second row with the third row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & -1 & 2 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & -1 & 1 & 0 & 0 \\
0 & -1 & 2 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Add the second row to the fourth row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & -1 & 1 & 0 & 0 \\
0 & -1 & 2 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) .
$$

Multiply the third row by -1 :

$$
\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) .
$$

Subtract the fourth row from the third row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) .
$$

Subtract the fourth row from the first row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 0 & 1 & 0 & -1 & -1 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) .
$$

Add 2 times the third row to the second row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 0 & 1 & 0 & -1 & -1 \\
0 & 1 & -2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 0 & 1 & 0 & -1 & -1 \\
0 & 1 & 0 & 0 & 2 & -2 & -1 & -2 \\
0 & 0 & 1 & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) .
$$

Subtract the third row from the first row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 1 & 1 & 0 & 1 & 0 & -1 & -1 \\
0 & 1 & 0 & 0 & 2 & -2 & -1 & -2 \\
0 & 0 & 1 & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{llll|rrrr}
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 2 & -2 & -1 & -2 \\
0 & 0 & 1 & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Subtract the second row from the first row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 2 & -2 & -1 & -2 \\
0 & 0 & 1 & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & -2 & 3 & 1 & 2 \\
0 & 1 & 0 & 0 & 2 & -2 & -1 & -2 \\
0 & 0 & 1 & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of A. Thus

$$
A^{-1}=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & -1 & 2 & 1
\end{array}\right)^{-1}=\left(\begin{array}{rrrr}
-2 & 3 & 1 & 2 \\
2 & -2 & -1 & -2 \\
1 & -1 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Problem 4 (20 pts.) Let A be the same matrix as in Problem 3. Evaluate the following determinants:
(i) $\operatorname{det} A$;
(ii) $\operatorname{det}(A-I)$;
(iii) $\operatorname{det}(2 A)$.

Solution: $\quad \operatorname{det} A=\operatorname{det}(A-I)=1, \operatorname{det}(2 A)=16$.
In the solution of Problem 3, the matrix A has been transformed into the identity matrix using elementary row operations. The latter included one row exchange and one row multiplications by -1 . It follows that $\operatorname{det} I=-(-1) \operatorname{det} A$. Therefore $\operatorname{det} A=\operatorname{det} I=1$.

Since A is a 4×4 matrix, we have that $\operatorname{det}(2 A)=2^{4} \operatorname{det} A=16 \operatorname{det} A=16$.
The determinant of the matrix

$$
A-I=\left(\begin{array}{rrrr}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & -3 & 0 \\
0 & -1 & 2 & 0
\end{array}\right)
$$

is easily evaluated using column expansions:

$$
\operatorname{det}(A-I)=\left|\begin{array}{rrrr}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & -3 & 0 \\
0 & -1 & 2 & 0
\end{array}\right|=-\left|\begin{array}{rrr}
1 & 1 & 1 \\
1 & -3 & 0 \\
-1 & 2 & 0
\end{array}\right|=-\left|\begin{array}{rr}
1 & -3 \\
-1 & 2
\end{array}\right|=-(-1)=1
$$

Bonus Problem 5 (20 pts.) Let $\mathbf{v}_{1}=(1,1,0), \mathbf{v}_{2}=(0,1,1), \mathbf{v}_{3}=(1,1,1)$, and $\mathbf{v}_{4}=(0,1,0)$. Determine which of the following sets of vectors are linearly independent:
(i) $\mathbf{v}_{1}, \mathbf{v}_{2}$;
(ii) $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$;
(iii) $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$.

Solution: The vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent. The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are also linearly independent. The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, and \mathbf{v}_{4} are linearly dependent.

The vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent since they are not scalar multiples of each other. Consider the 3×3 matrix V whose rows are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. We obtain

$$
\operatorname{det} V=\left|\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right|=\left|\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right|=1 .
$$

Since $\operatorname{det} V \neq 0$, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are linearly independent.
Finally, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, and \mathbf{v}_{4} are linearly dependent as there are more vectors in this set than coordinates. Besides, it is easy to observe a nontrivial linear relation between these vectors: $\mathbf{v}_{1}+\mathbf{v}_{2}-\mathbf{v}_{3}-\mathbf{v}_{4}=\mathbf{0}$.

