Test 2

Problem 1 (20 pts.) Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x-y+2 z=0$.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+2 y+3 z=6$.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y=z^{2}$.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x^{2}+y^{2}+z^{2}=0$.

Problem $2\left(20\right.$ pts.) Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the space of 2-by-2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
L\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Find the matrix of the operator L with respect to the basis

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Problem 3 (30 pts.) Consider a linear operator $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left(\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & -3 \\
2 & 1 & 4
\end{array}\right)
$$

(i) Find a basis for the image of f.
(ii) Find a basis for the null-space of f.

Problem 4 (30 pts.) Let $B=\left(\begin{array}{rr}-1 & 1 \\ 5 & 3\end{array}\right)$.
(i) Find all eigenvalues of the matrix B.
(ii) For each eigenvalue of B, find an associated eigenvector.
(iii) Is there a basis for \mathbb{R}^{2} consisting of eigenvectors of B ? Explain.
(iv) Find all eigenvalues of the matrix B^{2}.

Bonus Problem 5 (20 pts.) Solve the following system of differential equations (find all solutions):

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-x+y \\
\frac{d y}{d t}=5 x+3 y
\end{array}\right.
$$

