Test 2

Determine which of the following subsets of \mathbb{R}^3 are subspaces. Problem 1 (20 pts.) Briefly explain.

(i) The set S_1 of vectors $(x, y, z) \in \mathbb{R}^3$ such that x - y + 2z = 0.

(ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that x + 2y + 3z = 6.

(iii) The set \tilde{S}_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y = z^2$. (iv) The set S_4 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $x^2 + y^2 + z^2 = 0$.

Problem 2 (20 pts.) Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the space of 2-by-2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \to \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$L\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Find the matrix of the operator L with respect to the basis

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Problem 3 (30 pts.) Consider a linear operator $f : \mathbb{R}^3 \to \mathbb{R}^3$, $f(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -3 \\ 2 & 1 & 4 \end{pmatrix}.$$

- (i) Find a basis for the image of f.
- (ii) Find a basis for the null-space of f.

Problem 4 (30 pts.) Let $B = \begin{pmatrix} -1 & 1 \\ 5 & 3 \end{pmatrix}$.

(i) Find all eigenvalues of the matrix B.

- (ii) For each eigenvalue of B, find an associated eigenvector.
- (iii) Is there a basis for \mathbb{R}^2 consisting of eigenvectors of B? Explain.
- (iv) Find all eigenvalues of the matrix B^2 .

Bonus Problem 5 (20 pts.) Solve the following system of differential equations (find all solutions):

$$\begin{cases} \frac{dx}{dt} = -x + y, \\ \frac{dy}{dt} = 5x + 3y. \end{cases}$$