Sample problems for Test 2: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.

A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, a subspace must not be empty.

It is easy to see that each of the sets S_{1}, S_{2}, S_{3}, and S_{4} contains the zero vector $(0,0,0)$ and all these sets are closed under scalar multiplication.

The set S_{1} is the union of three planes $x=0, y=0$, and $z=0$. It is not closed under addition as the following example shows: $(1,1,0)+(0,0,1)=(1,1,1)$.
S_{2} is a plane passing through the origin. Obviously, it is closed under addition.
The condition $y^{2}+z^{2}=0$ is equivalent to $y=z=0$. Hence S_{3} is a line passing through the origin. It is closed under addition.

Since $y^{2}-z^{2}=(y-z)(y+z)$, the set S_{4} is the union of two planes $y-z=0$ and $y+z=0$. The following example shows that S_{4} is not closed under addition: $(0,1,1)+(0,1,-1)=(0,2,0)$.

Thus S_{2} and S_{3} are subspaces of \mathbb{R}^{3} while S_{1} and S_{4} are not.
Problem 2 (20 pts.) Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the space of 2-by-2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
L\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right) .
$$

Find the matrix of the operator L with respect to the basis

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Let M_{L} denote the desired matrix. By definition, M_{L} is a 4-by-4 matrix whose columns are coordinates of the matrices $L\left(E_{1}\right), L\left(E_{2}\right), L\left(E_{3}\right), L\left(E_{4}\right)$ with respect to the basis $E_{1}, E_{2}, E_{3}, E_{4}$. We have that

$$
\begin{aligned}
& L\left(E_{1}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right)=1 E_{1}+0 E_{2}+3 E_{3}+0 E_{4}, \\
& L\left(E_{2}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 3
\end{array}\right)=0 E_{1}+1 E_{2}+0 E_{3}+3 E_{4}, \\
& L\left(E_{3}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
4 & 0
\end{array}\right)=2 E_{1}+0 E_{2}+4 E_{3}+0 E_{4}, \\
& L\left(E_{4}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
0 & 4
\end{array}\right)=0 E_{1}+2 E_{2}+0 E_{3}+4 E_{4} .
\end{aligned}
$$

It follows that

$$
M_{L}=\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{array}\right) .
$$

Problem 3 (30 pts.) Consider a linear operator $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left(\begin{array}{rrr}
1 & -1 & -2 \\
-2 & 1 & 3 \\
-1 & 0 & 1
\end{array}\right)
$$

(i) Find a basis for the image of f.

The image of the linear operator f is the subspace of \mathbb{R}^{3} spanned by columns of the matrix A, that is, by vectors $\mathbf{v}_{1}=(1,-2,-1), \mathbf{v}_{2}=(-1,1,0)$, and $\mathbf{v}_{3}=(-2,3,1)$. The third column is a linear combination of the first two, $\mathbf{v}_{3}=\mathbf{v}_{2}-\mathbf{v}_{1}$. Therefore the span of $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} is the same as the span of \mathbf{v}_{1} and \mathbf{v}_{2}. The vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent because they are not parallel. Thus $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis for the image of f.

Alternative solution: The image of f is spanned by columns of the matrix A, that is, by vectors $\mathbf{v}_{1}=(1,-2,-1), \mathbf{v}_{2}=(-1,1,0)$, and $\mathbf{v}_{3}=(-2,3,1)$. To check linear independence of these vectors, we evaluate the determinant of A (using expansion by the third row):

$$
\operatorname{det} A=\left|\begin{array}{rrr}
1 & -1 & -2 \\
-2 & 1 & 3 \\
-1 & 0 & 1
\end{array}\right|=-1\left|\begin{array}{rr}
-1 & -2 \\
1 & 3
\end{array}\right|+1\left|\begin{array}{rr}
1 & -1 \\
-2 & 1
\end{array}\right|=(-1) \cdot(-1)+1 \cdot(-1)=0 .
$$

Since $\operatorname{det} A=0$, the columns of the matrix A are linearly dependent. Then the image of f is at most two-dimensional. On the other hand, the vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent because they are not parallel. Hence they span a two-dimensional subspace of \mathbb{R}^{3}. It follows that this subspace coincides with the image of f. Therefore $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis for the image of f.
(ii) Find a basis for the null-space of f.

The null-space of f is the set of solutions of the vector equation $A \mathbf{x}=\mathbf{0}$. To solve the equation, we shall convert the matrix A to reduced row echelon form. Since the right-hand side of the equation is the zero vector, elementary row operations do not change the solution set.

First we add the first row of the matrix A twice to the second row and once to the third one:

$$
\left(\begin{array}{rrr}
1 & -1 & -2 \\
-2 & 1 & 3 \\
-1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & -2 \\
0 & -1 & -1 \\
-1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & -1 & -2 \\
0 & -1 & -1 \\
0 & -1 & -1
\end{array}\right) .
$$

Then we subtract the second row from the third row:

$$
\left(\begin{array}{lll}
1 & -1 & -2 \\
0 & -1 & -1 \\
0 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & -2 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

Finally, we multiply the second row by -1 and add it to the first row:

$$
\left(\begin{array}{rrr}
1 & -1 & -2 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

It follows that the vector equation $A \mathbf{x}=\mathbf{0}$ is equivalent to the system $x-z=y+z=0$, where $\mathbf{x}=(x, y, z)$. The general solution of the system is $x=t, y=-t, z=t$ for an arbitrary $t \in \mathbb{R}$. That is, $\mathbf{x}=(t,-t, t)=t(1,-1,1)$, where $t \in \mathbb{R}$. Thus the null-space of the linear operator f is the line $t(1,-1,1)$. The vector $(1,-1,1)$ is a basis for this line.

Problem 4 (30 pts.) Let $B=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix B.

The eigenvalues of B are roots of the characteristic equation $\operatorname{det}(B-\lambda I)=0$. We obtain that

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 2 & 0 \\
1 & 1-\lambda & 1 \\
0 & 2 & 1-\lambda
\end{array}\right|=(1-\lambda)^{3}-2(1-\lambda)-2(1-\lambda) \\
=(1-\lambda)\left((1-\lambda)^{2}-4\right)=(1-\lambda)((1-\lambda)-2)((1-\lambda)+2)=-(\lambda-1)(\lambda+1)(\lambda-3) .
\end{gathered}
$$

Hence the matrix B has three eigenvalues: $-1,1$, and 3 .
(ii) For each eigenvalue of B, find an associated eigenvector.

An eigenvector $\mathbf{v}=(x, y, z)$ of B associated with an eigenvalue λ is a nonzero solution of the vector equation $(B-\lambda I) \mathbf{v}=\mathbf{0}$. To solve the equation, we apply row reduction to the matrix $B-\lambda I$.

First consider the case $\lambda=-1$. The row reduction yields

$$
B+I=\left(\begin{array}{lll}
2 & 2 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Hence

$$
(B+I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
x-z=0 \\
y+z=0
\end{array}\right.
$$

The general solution is $x=t, y=-t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{1}=(1,-1,1)$ is an eigenvector of B associated with the eigenvalue -1 .

Secondly, consider the case $\lambda=1$. The row reduction yields

$$
B-I=\left(\begin{array}{lll}
0 & 2 & 0 \\
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Hence

$$
(B-I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{l}
x+z=0 \\
y=0
\end{array}\right.
$$

The general solution is $x=-t, y=0, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{2}=(-1,0,1)$ is an eigenvector of B associated with the eigenvalue 1 .

Finally, consider the case $\lambda=3$. The row reduction yields

$$
\begin{gathered}
B-3 I=\left(\begin{array}{rrr}
-2 & 2 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & -1 & 1 \\
0 & 2 & -2
\end{array}\right) \\
\rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Hence

$$
(B-3 I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow \quad\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
x-z=0 \\
y-z=0
\end{array}\right.
$$

The general solution is $x=t, y=t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{3}=(1,1,1)$ is an eigenvector of B associated with the eigenvalue 3 .
(iii) Is there a basis for \mathbb{R}^{3} consisting of eigenvectors of B ? Explain.

By the above the vectors $\mathbf{v}_{1}=(1,-1,1), \mathbf{v}_{2}=(-1,0,1)$, and $\mathbf{v}_{3}=(1,1,1)$ are eigenvectors of the matrix B. These vectors are linearly independent since

$$
\left|\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right|=\left|\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right|=-2\left|\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right|=-2 \cdot 2=-4 \neq 0 .
$$

It follows that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is a basis for \mathbb{R}^{3}.
Alternatively, the existence of a basis for \mathbb{R}^{3} consisting of eigenvectors of B already follows from the fact that the matrix B has three distinct eigenvalues.
(iv) Find a diagonal matrix D and an invertible matrix U such that $B=U D U^{-1}$.

We have that $B=U D U^{-1}$, where

$$
D=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right), \quad U=\left(\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

This follows from the fact that D is the matrix of the linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L(\mathbf{x})=B \mathbf{x}$ with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ while U is the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to the standard basis.
(v) Find all eigenvalues of the matrix B^{2}.

Suppose that $B \mathbf{v}=\lambda \mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^{3}$ and $\lambda \in \mathbb{R}$. Then

$$
B^{2} \mathbf{v}=B(B \mathbf{v})=B(\lambda \mathbf{v})=\lambda(B \mathbf{v})=\lambda^{2} \mathbf{v}
$$

It follows that the vectors $\mathbf{v}_{1}=(1,-1,1), \mathbf{v}_{2}=(-1,0,1)$, and $\mathbf{v}_{3}=(1,1,1)$ are eigenvectors of the matrix B^{2} associated with eigenvalues 1,1 , and 9 , respectively. Since a 3 -by- 3 matrix can have 3 eigenvalues, we need additional arguments to show that 1 and 9 are the only eigenvalues of B^{2}.

Assume that \mathbf{v} is an eigenvector of B^{2} associated with an eigenvalue μ. Since $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is a basis for \mathbb{R}^{3}, we have $\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+r_{3} \mathbf{v}_{3}$ for some $r_{1}, r_{2}, r_{3} \in \mathbb{R}^{3}$. Then

$$
B^{2} \mathbf{v}=r_{1}\left(B^{2} \mathbf{v}_{1}\right)+r_{2}\left(B^{2} \mathbf{v}_{2}\right)+r_{3}\left(B^{2} \mathbf{v}_{3}\right)=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+9 r_{3} \mathbf{v}_{3}, \quad \mu \mathbf{v}=\mu r_{1} \mathbf{v}_{1}+\mu r_{2} \mathbf{v}_{2}+\mu r_{3} \mathbf{v}_{3} .
$$

The equality $B^{2} \mathbf{v}=\mu \mathbf{v}$ implies that $r_{1}=\mu r_{1}, r_{2}=\mu r_{2}$, and $9 r_{3}=\mu r_{3}$. Equivalently, $(\mu-1) r_{1}=$ $(\mu-1) r_{2}=(\mu-9) r_{3}=0$. As the coefficients r_{1}, r_{2}, r_{3} are not all equal to 0 , it follows that $\mu=1$ or $\mu=9$.

Bonus Problem 5 (20 pts.) Solve the following system of differential equations (find all solutions):

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+2 y \\
\frac{d y}{d t}=x+y+z \\
\frac{d z}{d t}=2 y+z
\end{array}\right.
$$

Introducing a vector function $\mathbf{v}(t)=(x(t), y(t), z(t))$, we can rewrite the system in the following way:

$$
\frac{d \mathbf{v}}{d t}=B \mathbf{v}, \quad \text { where } \quad B=\left(\begin{array}{ccc}
1 & 2 & 0 \\
1 & 1 & 1 \\
0 & 2 & 1
\end{array}\right)
$$

As shown in the solution of Problem 4, there is a basis for \mathbb{R}^{3} consisting of eigenvectors of the matrix B. Namely, $\mathbf{v}_{1}=(1,-1,1), \mathbf{v}_{2}=(-1,0,1)$, and $\mathbf{v}_{3}=(1,1,1)$ are eigenvectors of B associated with the eigenvalues $-1,1$, and 3 , respectively. These vectors form a basis for \mathbb{R}^{3}. It follows that

$$
\mathbf{v}(t)=r_{1}(t) \mathbf{v}_{1}+r_{2}(t) \mathbf{v}_{2}+r_{3}(t) \mathbf{v}_{3}
$$

where r_{1}, r_{2}, r_{3} are well-defined scalar functions (coordinates of \mathbf{v} with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$). Then

$$
\frac{d \mathbf{v}}{d t}=\frac{d r_{1}}{d t} \mathbf{v}_{1}+\frac{d r_{2}}{d t} \mathbf{v}_{2}+\frac{d r_{3}}{d t} \mathbf{v}_{3}, \quad B \mathbf{v}=r_{1} B \mathbf{v}_{1}+r_{2} B \mathbf{v}_{2}+r_{3} B \mathbf{v}_{3}=-r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+3 r_{3} \mathbf{v}_{3}
$$

As a consequence,

$$
\frac{d \mathbf{v}}{d t}=B \mathbf{v} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\frac{d r_{1}}{d t}=-r_{1} \\
\frac{d r_{2}}{d t}=r_{2} \\
\frac{d r_{3}}{d t}=3 r_{3}
\end{array}\right.
$$

The general solution of the differential equation $r_{1}^{\prime}=-r_{1}$ is $r_{1}(t)=c_{1} e^{-t}$, where c_{1} is an arbitrary constant. The general solution of the equation $r_{2}^{\prime}=r_{2}$ is $r_{2}(t)=c_{2} e^{t}$, where c_{2} is another arbitrary constant. The general solution of the equation $r_{3}^{\prime}=3 r_{3}$ is $r_{3}(t)=c_{3} e^{3 t}$, where c_{3} is yet another arbitrary constant. Therefore the general solution of the equation $\mathbf{v}^{\prime}=B \mathbf{v}$ is
$\mathbf{v}(t)=c_{1} e^{-t} \mathbf{v}_{1}+c_{2} e^{t} \mathbf{v}_{2}+c_{3} e^{3 t} \mathbf{v}_{3}=c_{1} e^{-t}\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)+c_{2} e^{t}\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right)+c_{3} e^{3 t}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}c_{1} e^{-t}-c_{2} e^{t}+c_{3} e^{3 t} \\ -c_{1} e^{-t}+c_{3} e^{3 t} \\ c_{1} e^{-t}+c_{2} e^{t}+c_{3} e^{3 t}\end{array}\right)$,
where $c_{1}, c_{2}, c_{3} \in \mathbb{R}$. Equivalently,

$$
\left\{\begin{array}{l}
x(t)=c_{1} e^{-t}-c_{2} e^{t}+c_{3} e^{3 t} \\
y(t)=-c_{1} e^{-t}+c_{3} e^{3 t} \\
z(t)=c_{1} e^{-t}+c_{2} e^{t}+c_{3} e^{3 t}
\end{array}\right.
$$

