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Test 2: Solutions

Problem 1 (20 pts.) Determine which of the following subsets of R
3 are subspaces.

Briefly explain.

(i) The set S1 of vectors (x, y, z) ∈ R
3 such that x − y + 2z = 0.

(ii) The set S2 of vectors (x, y, z) ∈ R
3 such that x + 2y + 3z = 6.

(iii) The set S3 of vectors (x, y, z) ∈ R
3 such that y = z2.

(iv) The set S4 of vectors (x, y, z) ∈ R
3 such that x2 + y2 + z2 = 0.

Solution: S1 and S4.

A subset of R
3 is a subspace if it is closed under addition and scalar multiplication. Besides, a

subspace must not be empty.
The set S1 is a plane passing through the origin. It is closed under addition and scalar multipli-

cation.
S2 is a plane that does not pass through the origin. It is not closed under scalar multiplication as

the following example shows: (1, 1, 1) ∈ S2 but 0(1, 1, 1) = (0, 0, 0) /∈ S2.
S3 is a parabolic cylinder. It is not closed under scalar multiplication as the following example

shows: (0, 1, 1) ∈ S3 but 2(0, 1, 1) = (0, 2, 2) /∈ S3.
The condition x2 + y2 + z2 = 0 is equivalent to x = y = z = 0. Hence the set S4 contains only the

zero vector. Clearly, it is a subspace.
Thus S1 and S4 are subspaces of R

3 while S2 and S3 are not.

Problem 2 (20 pts.) Let M2,2(R) denote the space of 2-by-2 matrices with real entries.
Consider a linear operator L : M2,2(R) → M2,2(R) given by

L

(

x y

z w

)

=

(

1 2
0 1

)(

x y

z w

)(

0 1
1 0

)

.

Find the matrix of the operator L with respect to the basis

E1 =

(

1 0
0 0

)

, E2 =

(

0 1
0 0

)

, E3 =

(

0 0
1 0

)

, E4 =

(

0 0
0 1

)

.

Solution:









0 1 0 2
1 0 2 0
0 0 0 1
0 0 1 0









.

Let ML denote the desired matrix. By definition, ML is a 4-by-4 matrix whose columns are
coordinates of the matrices L(E1), L(E2), L(E3), L(E4) with respect to the basis E1, E2, E3, E4. We
have that

L

(

x y
z w

)

=

(

1 2
0 1

)(

x y
z w

)(

0 1
1 0

)

=

(

1 2
0 1

)(

y x
w z

)

=

(

y + 2w x + 2z
w z

)

.
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In particular,

L(E1) =

(

0 1
0 0

)

= 0E1 + 1E2 + 0E3 + 0E4,

L(E2) =

(

1 0
0 0

)

= 1E1 + 0E2 + 0E3 + 0E4,

L(E3) =

(

0 2
0 1

)

= 0E1 + 2E2 + 0E3 + 1E4,

L(E4) =

(

2 0
1 0

)

= 2E1 + 0E2 + 1E3 + 0E4.

It follows that

ML =









0 1 0 2
1 0 2 0
0 0 0 1
0 0 1 0









.

Problem 3 (30 pts.) Consider a linear operator f : R
3 → R

3, f(x) = Ax, where

A =





1 1 1
−1 0 −3

2 1 4



 .

(i) Find a basis for the image of f .

Solution: (1,−1, 2), (1, 0, 1).

The image of the linear operator f is the subspace of R
3 spanned by columns of the matrix

A, that is, by vectors v1 = (1,−1, 2), v2 = (1, 0, 1), and v3 = (1,−3, 4). The third column is a
linear combination of the first two, v3 = 3v1 − 2v2 (this relation can be found using the method of
undetermined coefficients; one has to solve a system of linear equations). Therefore the span of v1,
v2, and v3 is the same as the span of v1 and v2. The vectors v1 and v2 are linearly independent
because they are not parallel. Thus v1, v2 is a basis for the image of f .

Alternative solution: The image of f is spanned by columns of the matrix A, that is, by vectors
v1 = (1,−1, 2), v2 = (1, 0, 1), and v3 = (1,−3, 4). To check linear independence of these vectors, we
evaluate the determinant of A (using expansion by the second column):

det A =

∣

∣

∣

∣

∣

∣

1 1 1
−1 0 −3

2 1 4

∣

∣

∣

∣

∣

∣

= −1

∣

∣

∣

∣

−1 −3
2 4

∣

∣

∣

∣

− 1

∣

∣

∣

∣

1 1
−1 −3

∣

∣

∣

∣

= −1 · 2 − 1 · (−2) = 0.

Since detA = 0, the columns of the matrix A are linearly dependent. Then the image of f is at most
two-dimensional. On the other hand, the vectors v1 and v2 are linearly independent because they
are not parallel. Hence they span a two-dimensional subspace of R

3. It follows that this subspace
coincides with the image of f . Therefore v1, v2 is a basis for the image of f .

(ii) Find a basis for the null-space of f .

Solution: (−3, 2, 1).
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The null-space of f is the set of solutions of the vector equation Ax = 0. To solve the equation,
we shall convert the matrix A to reduced row echelon form. Since the right-hand side of the equation
is the zero vector, elementary row operations do not change the solution set.

First we add the first row of the matrix A to the second row and subtract it twice from the third
row:





1 1 1
−1 0 −3

2 1 4



→





1 1 1
0 1 −2
2 1 4



→





1 1 1
0 1 −2
0 −1 2



 .

Then we add the second row to the third row:




1 1 1
0 1 −2
0 −1 2



→





1 1 1
0 1 −2
0 0 0



 .

Finally, we subtract the second row from the first row:





1 1 1
0 1 −2
0 0 0



→





1 0 3
0 1 −2
0 0 0



 .

It follows that the vector equation Ax = 0 is equivalent to the system x + 3z = y − 2z = 0, where
x = (x, y, z). The general solution of the system is x = −3t, y = 2t, z = t for an arbitrary t ∈ R.
That is, x = (−3t, 2t, t) = t(−3, 2, 1), where t ∈ R. Thus the null-space of the linear operator f is the
line t(−3, 2, 1). The vector (−3, 2, 1) is a basis for this line.

Problem 4 (30 pts.) Let B =

(

−1 1
5 3

)

.

(i) Find all eigenvalues of the matrix B.

Solution: −2 and 4.

The eigenvalues of B are roots of the characteristic equation det(B − λI) = 0. We obtain that

det(B − λI) =

∣

∣

∣

∣

−1 − λ 1
5 3 − λ

∣

∣

∣

∣

= (−1 − λ)(3 − λ) − 5 = λ2
− 2λ − 8 = (λ − 4)(λ + 2).

Hence the matrix B has two eigenvalues: −2 and 4.

(ii) For each eigenvalue of B, find an associated eigenvector.

Solution: v1 = (−1, 1) and v2 = (1, 5) are eigenvectors of B associated with the eigen-
values −2 and 4, respectively.

An eigenvector v = (x, y) of B associated with an eigenvalue λ is a nonzero solution of the vector
equation (B − λI)v = 0.

First consider the case λ = −2. We obtain

(B + 2I)v = 0 ⇐⇒

(

1 1
5 5

)(

x
y

)

=

(

0
0

)

⇐⇒ x + y = 0.

The general solution is x = −t, y = t, where t ∈ R. In particular, v1 = (−1, 1) is an eigenvector of B
associated with the eigenvalue −2.
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Now consider the case λ = 4. We obtain

(B − 4I)v = 0 ⇐⇒

(

−5 1
5 −1

)(

x
y

)

=

(

0
0

)

⇐⇒ −5x + y = 0.

The general solution is x = t, y = 5t, where t ∈ R. In particular, v2 = (1, 5) is an eigenvector of B
associated with the eigenvalue 4.

(iii) Is there a basis for R
2 consisting of eigenvectors of B? Explain.

Solution: Yes.

By the above the vectors v1 = (−1, 1) and v2 = (1, 5) are eigenvectors of the matrix B. These
vectors are linearly independent since they are not parallel. It follows that v1,v2 is a basis for R

2.
Alternatively, the existence of a basis for R

2 consisting of eigenvectors of B already follows from
the fact that the matrix B has two distinct eigenvalues.

(iv) Find all eigenvalues of the matrix B2.

Solution: 4 and 16.

Suppose that Bv = λv for some v ∈ R
2 and λ ∈ R. Then

B2
v = B(Bv) = B(λv) = λ(Bv) = λ2

v.

It follows that the vectors v1 = (−1, 1) and v2 = (1, 5) are eigenvectors of the matrix B2 associated
with eigenvalues (−2)2 = 4 and 42 = 16, respectively. Since a 2-by-2 matrix can have at most 2
eigenvalues, 4 and 16 are the only eigenvalues of B2.

Bonus Problem 5 (20 pts.) Solve the following system of differential equations (find
all solutions):















dx

dt
= −x + y,

dy

dt
= 5x + 3y.

Solution: x(t) = −c1e
−2t+c2e

4t, y(t) = c1e
−2t+5c2e

4t, where c1, c2 are arbitrary constants.

Introducing a vector function v(t) = (x(t), y(t)), we can rewrite the system in the following way:

dv

dt
= Bv, where B =

(

−1 1
5 3

)

.

As shown in the solution of Problem 4, there is a basis for R
2 consisting of eigenvectors of the matrix

B. Namely, v1 = (−1, 1) and v2 = (1, 5) are eigenvectors of B associated with the eigenvalues −2 and
4, respectively. These vectors form a basis for R

2. It follows that

v(t) = r1(t)v1 + r2(t)v2,

where r1, r2 are well-defined scalar functions (coordinates of v with respect to the basis v1,v2). Then

dv

dt
=

dr1

dt
v1 +

dr2

dt
v2, Bv = r1Bv1 + r2Bv2 = −2r1v1 + 4r2v2.
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As a consequence,

dv

dt
= Bv ⇐⇒

{

dr1

dt
= −2r1,

dr2

dt
= 4r2.

The general solution of the differential equation r′
1

= −2r1 is r1(t) = c1e
−2t, where c1 is an arbitrary

constant. The general solution of the equation r′
2

= 4r2 is r2(t) = c2e
4t, where c2 is another arbitrary

constant. Therefore the general solution of the equation v
′ = Bv is

v(t) = c1e
−2t

v1 + c2e
4t
v2 = c1e

−2t

(

−1

1

)

+ c2e
4t

(

1

5

)

=

(

−c1e
−2t + c2e

4t

c1e
−2t + 5c2e

4t

)

,

where c1, c2 ∈ R. Equivalently,
{

x(t) = −c1e
−2t + c2e

4t,

y(t) = c1e
−2t + 5c2e

4t.
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