Test 2: Solutions

Problem 1 (20 pts.) Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x-y+2 z=0$.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+2 y+3 z=6$.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y=z^{2}$.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x^{2}+y^{2}+z^{2}=0$.

Solution: $\quad S_{1}$ and S_{4}.
A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, a subspace must not be empty.

The set S_{1} is a plane passing through the origin. It is closed under addition and scalar multiplication.
S_{2} is a plane that does not pass through the origin. It is not closed under scalar multiplication as the following example shows: $(1,1,1) \in S_{2}$ but $0(1,1,1)=(0,0,0) \notin S_{2}$.
S_{3} is a parabolic cylinder. It is not closed under scalar multiplication as the following example shows: $(0,1,1) \in S_{3}$ but $2(0,1,1)=(0,2,2) \notin S_{3}$.

The condition $x^{2}+y^{2}+z^{2}=0$ is equivalent to $x=y=z=0$. Hence the set S_{4} contains only the zero vector. Clearly, it is a subspace.

Thus S_{1} and S_{4} are subspaces of \mathbb{R}^{3} while S_{2} and S_{3} are not.

Problem $2(20 \mathrm{pts}$.$) Let \mathcal{M}_{2,2}(\mathbb{R})$ denote the space of 2-by-2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
L\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Find the matrix of the operator L with respect to the basis

$$
\begin{aligned}
& \qquad E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) . \\
& \text { Solution: }\left(\begin{array}{llll}
0 & 1 & 0 & 2 \\
1 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

Let M_{L} denote the desired matrix. By definition, M_{L} is a 4-by-4 matrix whose columns are coordinates of the matrices $L\left(E_{1}\right), L\left(E_{2}\right), L\left(E_{3}\right), L\left(E_{4}\right)$ with respect to the basis $E_{1}, E_{2}, E_{3}, E_{4}$. We have that

$$
L\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
y & x \\
w & z
\end{array}\right)=\left(\begin{array}{cc}
y+2 w & x+2 z \\
w & z
\end{array}\right) .
$$

In particular,

$$
\begin{aligned}
& L\left(E_{1}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=0 E_{1}+1 E_{2}+0 E_{3}+0 E_{4} \\
& L\left(E_{2}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=1 E_{1}+0 E_{2}+0 E_{3}+0 E_{4} \\
& L\left(E_{3}\right)=\left(\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right)=0 E_{1}+2 E_{2}+0 E_{3}+1 E_{4} \\
& L\left(E_{4}\right)=\left(\begin{array}{ll}
2 & 0 \\
1 & 0
\end{array}\right)=2 E_{1}+0 E_{2}+1 E_{3}+0 E_{4}
\end{aligned}
$$

It follows that

$$
M_{L}=\left(\begin{array}{cccc}
0 & 1 & 0 & 2 \\
1 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Problem 3 (30 pts.) Consider a linear operator $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left(\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & -3 \\
2 & 1 & 4
\end{array}\right)
$$

(i) Find a basis for the image of f.

Solution: $(1,-1,2),(1,0,1)$.
The image of the linear operator f is the subspace of \mathbb{R}^{3} spanned by columns of the matrix A, that is, by vectors $\mathbf{v}_{1}=(1,-1,2), \mathbf{v}_{2}=(1,0,1)$, and $\mathbf{v}_{3}=(1,-3,4)$. The third column is a linear combination of the first two, $\mathbf{v}_{3}=3 \mathbf{v}_{1}-2 \mathbf{v}_{2}$ (this relation can be found using the method of undetermined coefficients; one has to solve a system of linear equations). Therefore the span of \mathbf{v}_{1}, \mathbf{v}_{2}, and \mathbf{v}_{3} is the same as the span of \mathbf{v}_{1} and \mathbf{v}_{2}. The vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent because they are not parallel. Thus $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis for the image of f.

Alternative solution: The image of f is spanned by columns of the matrix A, that is, by vectors $\mathbf{v}_{1}=(1,-1,2), \mathbf{v}_{2}=(1,0,1)$, and $\mathbf{v}_{3}=(1,-3,4)$. To check linear independence of these vectors, we evaluate the determinant of A (using expansion by the second column):

$$
\operatorname{det} A=\left|\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & -3 \\
2 & 1 & 4
\end{array}\right|=-1\left|\begin{array}{rr}
-1 & -3 \\
2 & 4
\end{array}\right|-1\left|\begin{array}{rr}
1 & 1 \\
-1 & -3
\end{array}\right|=-1 \cdot 2-1 \cdot(-2)=0
$$

Since $\operatorname{det} A=0$, the columns of the matrix A are linearly dependent. Then the image of f is at most two-dimensional. On the other hand, the vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent because they are not parallel. Hence they span a two-dimensional subspace of \mathbb{R}^{3}. It follows that this subspace coincides with the image of f. Therefore $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis for the image of f.
(ii) Find a basis for the null-space of f.

Solution: $(-3,2,1)$.

The null-space of f is the set of solutions of the vector equation $A \mathbf{x}=\mathbf{0}$. To solve the equation, we shall convert the matrix A to reduced row echelon form. Since the right-hand side of the equation is the zero vector, elementary row operations do not change the solution set.

First we add the first row of the matrix A to the second row and subtract it twice from the third row:

$$
\left(\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & -3 \\
2 & 1 & 4
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & -2 \\
2 & 1 & 4
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & -2 \\
0 & -1 & 2
\end{array}\right) .
$$

Then we add the second row to the third row:

$$
\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & -2 \\
0 & -1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

Finally, we subtract the second row from the first row:

$$
\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

It follows that the vector equation $A \mathbf{x}=\mathbf{0}$ is equivalent to the system $x+3 z=y-2 z=0$, where $\mathbf{x}=(x, y, z)$. The general solution of the system is $x=-3 t, y=2 t, z=t$ for an arbitrary $t \in \mathbb{R}$. That is, $\mathbf{x}=(-3 t, 2 t, t)=t(-3,2,1)$, where $t \in \mathbb{R}$. Thus the null-space of the linear operator f is the line $t(-3,2,1)$. The vector $(-3,2,1)$ is a basis for this line.

Problem 4 (30 pts.) Let $B=\left(\begin{array}{rr}-1 & 1 \\ 5 & 3\end{array}\right)$.
(i) Find all eigenvalues of the matrix B.

Solution: -2 and 4.
The eigenvalues of B are roots of the characteristic equation $\operatorname{det}(B-\lambda I)=0$. We obtain that

$$
\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
-1-\lambda & 1 \\
5 & 3-\lambda
\end{array}\right|=(-1-\lambda)(3-\lambda)-5=\lambda^{2}-2 \lambda-8=(\lambda-4)(\lambda+2) .
$$

Hence the matrix B has two eigenvalues: -2 and 4 .
(ii) For each eigenvalue of B, find an associated eigenvector.

Solution: $\quad \mathbf{v}_{1}=(-1,1)$ and $\mathbf{v}_{2}=(1,5)$ are eigenvectors of B associated with the eigenvalues -2 and 4 , respectively.

An eigenvector $\mathbf{v}=(x, y)$ of B associated with an eigenvalue λ is a nonzero solution of the vector equation $(B-\lambda I) \mathbf{v}=\mathbf{0}$.

First consider the case $\lambda=-2$. We obtain

$$
(B+2 I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow \quad\left(\begin{array}{ll}
1 & 1 \\
5 & 5
\end{array}\right)\binom{x}{y}=\binom{0}{0} \quad \Longleftrightarrow \quad x+y=0
$$

The general solution is $x=-t, y=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{1}=(-1,1)$ is an eigenvector of B associated with the eigenvalue -2 .

Now consider the case $\lambda=4$. We obtain

$$
(B-4 I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow \quad\left(\begin{array}{rr}
-5 & 1 \\
5 & -1
\end{array}\right)\binom{x}{y}=\binom{0}{0} \quad \Longleftrightarrow \quad-5 x+y=0
$$

The general solution is $x=t, y=5 t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{2}=(1,5)$ is an eigenvector of B associated with the eigenvalue 4 .
(iii) Is there a basis for \mathbb{R}^{2} consisting of eigenvectors of B ? Explain.

Solution: Yes.
By the above the vectors $\mathbf{v}_{1}=(-1,1)$ and $\mathbf{v}_{2}=(1,5)$ are eigenvectors of the matrix B. These vectors are linearly independent since they are not parallel. It follows that $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis for \mathbb{R}^{2}.

Alternatively, the existence of a basis for \mathbb{R}^{2} consisting of eigenvectors of B already follows from the fact that the matrix B has two distinct eigenvalues.
(iv) Find all eigenvalues of the matrix B^{2}.

Solution: 4 and 16.
Suppose that $B \mathbf{v}=\lambda \mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^{2}$ and $\lambda \in \mathbb{R}$. Then

$$
B^{2} \mathbf{v}=B(B \mathbf{v})=B(\lambda \mathbf{v})=\lambda(B \mathbf{v})=\lambda^{2} \mathbf{v}
$$

It follows that the vectors $\mathbf{v}_{1}=(-1,1)$ and $\mathbf{v}_{2}=(1,5)$ are eigenvectors of the matrix B^{2} associated with eigenvalues $(-2)^{2}=4$ and $4^{2}=16$, respectively. Since a 2 -by- 2 matrix can have at most 2 eigenvalues, 4 and 16 are the only eigenvalues of B^{2}.

Bonus Problem 5 (20 pts.) Solve the following system of differential equations (find all solutions):

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-x+y \\
\frac{d y}{d t}=5 x+3 y
\end{array}\right.
$$

Solution: $x(t)=-c_{1} e^{-2 t}+c_{2} e^{4 t}, y(t)=c_{1} e^{-2 t}+5 c_{2} e^{4 t}$, where c_{1}, c_{2} are arbitrary constants.
Introducing a vector function $\mathbf{v}(t)=(x(t), y(t))$, we can rewrite the system in the following way:

$$
\frac{d \mathbf{v}}{d t}=B \mathbf{v}, \quad \text { where } \quad B=\left(\begin{array}{rr}
-1 & 1 \\
5 & 3
\end{array}\right) .
$$

As shown in the solution of Problem 4, there is a basis for \mathbb{R}^{2} consisting of eigenvectors of the matrix B. Namely, $\mathbf{v}_{1}=(-1,1)$ and $\mathbf{v}_{2}=(1,5)$ are eigenvectors of B associated with the eigenvalues -2 and 4 , respectively. These vectors form a basis for \mathbb{R}^{2}. It follows that

$$
\mathbf{v}(t)=r_{1}(t) \mathbf{v}_{1}+r_{2}(t) \mathbf{v}_{2},
$$

where r_{1}, r_{2} are well-defined scalar functions (coordinates of \mathbf{v} with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$). Then

$$
\frac{d \mathbf{v}}{d t}=\frac{d r_{1}}{d t} \mathbf{v}_{1}+\frac{d r_{2}}{d t} \mathbf{v}_{2}, \quad B \mathbf{v}=r_{1} B \mathbf{v}_{1}+r_{2} B \mathbf{v}_{2}=-2 r_{1} \mathbf{v}_{1}+4 r_{2} \mathbf{v}_{2}
$$

As a consequence,

$$
\frac{d \mathbf{v}}{d t}=B \mathbf{v} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\frac{d r_{1}}{d t}=-2 r_{1} \\
\frac{d r_{2}}{d t}=4 r_{2}
\end{array}\right.
$$

The general solution of the differential equation $r_{1}^{\prime}=-2 r_{1}$ is $r_{1}(t)=c_{1} e^{-2 t}$, where c_{1} is an arbitrary constant. The general solution of the equation $r_{2}^{\prime}=4 r_{2}$ is $r_{2}(t)=c_{2} e^{4 t}$, where c_{2} is another arbitrary constant. Therefore the general solution of the equation $\mathbf{v}^{\prime}=B \mathbf{v}$ is

$$
\mathbf{v}(t)=c_{1} e^{-2 t} \mathbf{v}_{1}+c_{2} e^{4 t} \mathbf{v}_{2}=c_{1} e^{-2 t}\binom{-1}{1}+c_{2} e^{4 t}\binom{1}{5}=\binom{-c_{1} e^{-2 t}+c_{2} e^{4 t}}{c_{1} e^{-2 t}+5 c_{2} e^{4 t}}
$$

where $c_{1}, c_{2} \in \mathbb{R}$. Equivalently,

$$
\left\{\begin{array}{l}
x(t)=-c_{1} e^{-2 t}+c_{2} e^{4 t}, \\
y(t)=c_{1} e^{-2 t}+5 c_{2} e^{4 t} .
\end{array}\right.
$$

