Test 2: Solutions

Problem 1 (20 pts.) Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

(i) The set S_1 of vectors $(x, y, z) \in \mathbb{R}^3$ such that x - y + 2z = 0.

(ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that x + 2y + 3z = 6.

(iii) The set S_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y = z^2$.

(iv) The set S_4 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $x^2 + y^2 + z^2 = 0$.

Solution: S_1 and S_4 .

A subset of \mathbb{R}^3 is a subspace if it is closed under addition and scalar multiplication. Besides, a subspace must not be empty.

The set S_1 is a plane passing through the origin. It is closed under addition and scalar multiplication.

 S_2 is a plane that does not pass through the origin. It is not closed under scalar multiplication as the following example shows: $(1,1,1) \in S_2$ but $0(1,1,1) = (0,0,0) \notin S_2$.

 S_3 is a parabolic cylinder. It is not closed under scalar multiplication as the following example shows: $(0,1,1) \in S_3$ but $2(0,1,1) = (0,2,2) \notin S_3$.

The condition $x^2 + y^2 + z^2 = 0$ is equivalent to x = y = z = 0. Hence the set S_4 contains only the zero vector. Clearly, it is a subspace.

Thus S_1 and S_4 are subspaces of \mathbb{R}^3 while S_2 and S_3 are not.

Problem 2 (20 pts.) Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the space of 2-by-2 matrices with real entries. Consider a linear operator $L : \mathcal{M}_{2,2}(\mathbb{R}) \to \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$L\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Find the matrix of the operator L with respect to the basis

$$E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad E_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_{4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$
Solution:
$$\begin{pmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Let M_L denote the desired matrix. By definition, M_L is a 4-by-4 matrix whose columns are coordinates of the matrices $L(E_1), L(E_2), L(E_3), L(E_4)$ with respect to the basis E_1, E_2, E_3, E_4 . We have that

$$L\begin{pmatrix}x&y\\z&w\end{pmatrix} = \begin{pmatrix}1&2\\0&1\end{pmatrix}\begin{pmatrix}x&y\\z&w\end{pmatrix}\begin{pmatrix}0&1\\1&0\end{pmatrix} = \begin{pmatrix}1&2\\0&1\end{pmatrix}\begin{pmatrix}y&x\\w&z\end{pmatrix} = \begin{pmatrix}y+2w&x+2z\\w&z\end{pmatrix}.$$

In particular,

$$L(E_1) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 0E_1 + 1E_2 + 0E_3 + 0E_4,$$
$$L(E_2) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 1E_1 + 0E_2 + 0E_3 + 0E_4,$$
$$L(E_3) = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} = 0E_1 + 2E_2 + 0E_3 + 1E_4,$$
$$L(E_4) = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} = 2E_1 + 0E_2 + 1E_3 + 0E_4.$$

It follows that

$$M_L = \begin{pmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Problem 3 (30 pts.) Consider a linear operator $f : \mathbb{R}^3 \to \mathbb{R}^3$, $f(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -3 \\ 2 & 1 & 4 \end{pmatrix}.$$

(i) Find a basis for the image of f.

Solution: (1, -1, 2), (1, 0, 1).

The image of the linear operator f is the subspace of \mathbb{R}^3 spanned by columns of the matrix A, that is, by vectors $\mathbf{v}_1 = (1, -1, 2)$, $\mathbf{v}_2 = (1, 0, 1)$, and $\mathbf{v}_3 = (1, -3, 4)$. The third column is a linear combination of the first two, $\mathbf{v}_3 = 3\mathbf{v}_1 - 2\mathbf{v}_2$ (this relation can be found using the method of undetermined coefficients; one has to solve a system of linear equations). Therefore the span of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 is the same as the span of \mathbf{v}_1 and \mathbf{v}_2 . The vectors \mathbf{v}_1 and \mathbf{v}_2 are linearly independent because they are not parallel. Thus \mathbf{v}_1 , \mathbf{v}_2 is a basis for the image of f.

Alternative solution: The image of f is spanned by columns of the matrix A, that is, by vectors $\mathbf{v}_1 = (1, -1, 2)$, $\mathbf{v}_2 = (1, 0, 1)$, and $\mathbf{v}_3 = (1, -3, 4)$. To check linear independence of these vectors, we evaluate the determinant of A (using expansion by the second column):

 $\det A = \begin{vmatrix} 1 & 1 & 1 \\ -1 & 0 & -3 \\ 2 & 1 & 4 \end{vmatrix} = -1 \begin{vmatrix} -1 & -3 \\ 2 & 4 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ -1 & -3 \end{vmatrix} = -1 \cdot 2 - 1 \cdot (-2) = 0.$

Since det A = 0, the columns of the matrix A are linearly dependent. Then the image of f is at most two-dimensional. On the other hand, the vectors \mathbf{v}_1 and \mathbf{v}_2 are linearly independent because they are not parallel. Hence they span a two-dimensional subspace of \mathbb{R}^3 . It follows that this subspace coincides with the image of f. Therefore \mathbf{v}_1 , \mathbf{v}_2 is a basis for the image of f.

(ii) Find a basis for the null-space of f.

Solution: (-3, 2, 1).

The null-space of f is the set of solutions of the vector equation $A\mathbf{x} = \mathbf{0}$. To solve the equation, we shall convert the matrix A to reduced row echelon form. Since the right-hand side of the equation is the zero vector, elementary row operations do not change the solution set.

First we add the first row of the matrix A to the second row and subtract it twice from the third row:

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -3 \\ 2 & 1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ 2 & 1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & -1 & 2 \end{pmatrix}.$$

Then we add the second row to the third row:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & -1 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Finally, we subtract the second row from the first row:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}.$$

It follows that the vector equation $A\mathbf{x} = \mathbf{0}$ is equivalent to the system x + 3z = y - 2z = 0, where $\mathbf{x} = (x, y, z)$. The general solution of the system is x = -3t, y = 2t, z = t for an arbitrary $t \in \mathbb{R}$. That is, $\mathbf{x} = (-3t, 2t, t) = t(-3, 2, 1)$, where $t \in \mathbb{R}$. Thus the null-space of the linear operator f is the line t(-3, 2, 1). The vector (-3, 2, 1) is a basis for this line.

Problem 4 (30 pts.) Let $B = \begin{pmatrix} -1 & 1 \\ 5 & 3 \end{pmatrix}$.

(i) Find all eigenvalues of the matrix B.

Solution: -2 and 4.

The eigenvalues of B are roots of the characteristic equation $det(B - \lambda I) = 0$. We obtain that

$$\det(B - \lambda I) = \begin{vmatrix} -1 - \lambda & 1\\ 5 & 3 - \lambda \end{vmatrix} = (-1 - \lambda)(3 - \lambda) - 5 = \lambda^2 - 2\lambda - 8 = (\lambda - 4)(\lambda + 2).$$

Hence the matrix B has two eigenvalues: -2 and 4.

(ii) For each eigenvalue of B, find an associated eigenvector.

Solution: $\mathbf{v}_1 = (-1, 1)$ and $\mathbf{v}_2 = (1, 5)$ are eigenvectors of *B* associated with the eigenvalues -2 and 4, respectively.

An eigenvector $\mathbf{v} = (x, y)$ of B associated with an eigenvalue λ is a nonzero solution of the vector equation $(B - \lambda I)\mathbf{v} = \mathbf{0}$.

First consider the case $\lambda = -2$. We obtain

$$(B+2I)\mathbf{v} = \mathbf{0} \quad \Longleftrightarrow \quad \begin{pmatrix} 1 & 1\\ 5 & 5 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \quad \Longleftrightarrow \quad x+y=0.$$

The general solution is x = -t, y = t, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_1 = (-1, 1)$ is an eigenvector of B associated with the eigenvalue -2.

Now consider the case $\lambda = 4$. We obtain

$$(B-4I)\mathbf{v} = \mathbf{0} \quad \Longleftrightarrow \quad \begin{pmatrix} -5 & 1\\ 5 & -1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \quad \Longleftrightarrow \quad -5x+y=0$$

The general solution is x = t, y = 5t, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_2 = (1, 5)$ is an eigenvector of B associated with the eigenvalue 4.

(iii) Is there a basis for \mathbb{R}^2 consisting of eigenvectors of B? Explain.

Solution: Yes.

By the above the vectors $\mathbf{v}_1 = (-1, 1)$ and $\mathbf{v}_2 = (1, 5)$ are eigenvectors of the matrix B. These vectors are linearly independent since they are not parallel. It follows that $\mathbf{v}_1, \mathbf{v}_2$ is a basis for \mathbb{R}^2 .

Alternatively, the existence of a basis for \mathbb{R}^2 consisting of eigenvectors of B already follows from the fact that the matrix B has two distinct eigenvalues.

(iv) Find all eigenvalues of the matrix B^2 .

Solution: 4 and 16.

Suppose that $B\mathbf{v} = \lambda \mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}$. Then

$$B^2 \mathbf{v} = B(B\mathbf{v}) = B(\lambda \mathbf{v}) = \lambda(B\mathbf{v}) = \lambda^2 \mathbf{v}.$$

It follows that the vectors $\mathbf{v}_1 = (-1, 1)$ and $\mathbf{v}_2 = (1, 5)$ are eigenvectors of the matrix B^2 associated with eigenvalues $(-2)^2 = 4$ and $4^2 = 16$, respectively. Since a 2-by-2 matrix can have at most 2 eigenvalues, 4 and 16 are the only eigenvalues of B^2 .

Bonus Problem 5 (20 pts.) Solve the following system of differential equations (find all solutions):

$$\begin{cases} \frac{dx}{dt} = -x + y, \\ \frac{dy}{dt} = 5x + 3y. \end{cases}$$

Solution: $x(t) = -c_1 e^{-2t} + c_2 e^{4t}$, $y(t) = c_1 e^{-2t} + 5c_2 e^{4t}$, where c_1, c_2 are arbitrary constants.

Introducing a vector function $\mathbf{v}(t) = (x(t), y(t))$, we can rewrite the system in the following way:

$$\frac{d\mathbf{v}}{dt} = B\mathbf{v}, \text{ where } B = \begin{pmatrix} -1 & 1\\ 5 & 3 \end{pmatrix}.$$

As shown in the solution of Problem 4, there is a basis for \mathbb{R}^2 consisting of eigenvectors of the matrix B. Namely, $\mathbf{v}_1 = (-1, 1)$ and $\mathbf{v}_2 = (1, 5)$ are eigenvectors of B associated with the eigenvalues -2 and 4, respectively. These vectors form a basis for \mathbb{R}^2 . It follows that

$$\mathbf{v}(t) = r_1(t)\mathbf{v}_1 + r_2(t)\mathbf{v}_2,$$

where r_1, r_2 are well-defined scalar functions (coordinates of **v** with respect to the basis $\mathbf{v}_1, \mathbf{v}_2$). Then

$$\frac{d\mathbf{v}}{dt} = \frac{dr_1}{dt}\mathbf{v}_1 + \frac{dr_2}{dt}\mathbf{v}_2, \qquad B\mathbf{v} = r_1B\mathbf{v}_1 + r_2B\mathbf{v}_2 = -2r_1\mathbf{v}_1 + 4r_2\mathbf{v}_2.$$

As a consequence,

$$\frac{d\mathbf{v}}{dt} = B\mathbf{v} \quad \Longleftrightarrow \quad \begin{cases} \frac{dr_1}{dt} = -2r_1, \\ \frac{dr_2}{dt} = 4r_2. \end{cases}$$

The general solution of the differential equation $r'_1 = -2r_1$ is $r_1(t) = c_1 e^{-2t}$, where c_1 is an arbitrary constant. The general solution of the equation $r'_2 = 4r_2$ is $r_2(t) = c_2 e^{4t}$, where c_2 is another arbitrary constant. Therefore the general solution of the equation $\mathbf{v}' = B\mathbf{v}$ is

$$\mathbf{v}(t) = c_1 e^{-2t} \mathbf{v}_1 + c_2 e^{4t} \mathbf{v}_2 = c_1 e^{-2t} \begin{pmatrix} -1\\ 1 \end{pmatrix} + c_2 e^{4t} \begin{pmatrix} 1\\ 5 \end{pmatrix} = \begin{pmatrix} -c_1 e^{-2t} + c_2 e^{4t}\\ c_1 e^{-2t} + 5c_2 e^{4t} \end{pmatrix},$$

where $c_1, c_2 \in \mathbb{R}$. Equivalently,

$$\begin{cases} x(t) = -c_1 e^{-2t} + c_2 e^{4t}, \\ y(t) = c_1 e^{-2t} + 5c_2 e^{4t}. \end{cases}$$