Sample problems for the final exam

Any problem may be altered or replaced by a different one!
Problem 1 (15 pts.) Find a quadratic polynomial $p(x)=a x^{2}+b x+c$ such that $p(-1)=p(3)=6$ and $p^{\prime}(2)=p(1)$.

Problem $2(20$ pts. $) \quad$ Let $\mathbf{v}_{1}=(1,1,1), \mathbf{v}_{2}=(1,1,0)$, and $\mathbf{v}_{3}=(1,0,1)$. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator on \mathbb{R}^{3} such that $L\left(\mathbf{v}_{1}\right)=\mathbf{v}_{2}, L\left(\mathbf{v}_{2}\right)=\mathbf{v}_{3}, L\left(\mathbf{v}_{3}\right)=\mathbf{v}_{1}$.
(i) Show that the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ form a basis for \mathbb{R}^{3}.
(ii) Find the matrix of the operator L relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
(iii) Find the matrix of the operator L relative to the standard basis.

Problem 3 (20 pts.) Let $B=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix B.
(ii) Find a basis for \mathbb{R}^{3} consisting of eigenvectors of B ?
(iii) Find an orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of B ?

Problem 4 (20 pts.) Find a quadratic polynomial q that is the best least squares fit to the function $f(x)=|x|$ on the interval $[-1,1]$. This means that q should minimize the distance

$$
\operatorname{dist}(f, q)=\left(\int_{-1}^{1}|f(x)-q(x)|^{2} d x\right)^{1 / 2}
$$

over all polynomials of degree at most 2 .
Problem 5 (25 pts.) It is known that

$$
\int x^{2} \sin (a x) d x=\left(-\frac{x^{2}}{a}+\frac{2}{a^{3}}\right) \cos (a x)+\frac{2 x}{a^{2}} \sin (a x)+C, \quad a \neq 0
$$

(i) Find the Fourier sine series of the function $f(x)=x^{2}$ on the interval $[0, \pi]$.
(ii) Over the interval $[-3.5 \pi, 3.5 \pi]$, sketch the function to which the series converges.
(iii) Describe how the answer to (ii) would change if we studied the Fourier cosine series instead.

Bonus Problem 6 (15 pts.) Solve the initial-boundary value problem for the heat equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<\pi, \quad t>0) \\
& u(x, 0)=1+2 \cos (2 x)-\cos (3 x) \quad(0<x<\pi) \\
& \frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(\pi, t)=0 \quad(t>0) .
\end{aligned}
$$

