
MATH 311–505/506 Fall 2009

Sample problems for the final exam
Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Find a quadratic polynomial p(x) = ax2 + bx + c such that
p(−1) = p(3) = 6 and p′(2) = p(1).

We have that p(x) = ax2 + bx+ c. Then p(−1) = a− b+ c, p(1) = a+ b+ c, and p(3) = 9a+3b+ c.
Also, p′(x) = 2ax + b and p′(2) = 4a + b. The coefficients a, b, and c have to be chosen so that







a − b + c = 6,
9a + 3b + c = 6,
4a + b = a + b + c.

This is a system of linear equations in variables a, b, c. To solve the system, let us convert the third
equation to the standard form and add it to the first and the second equations:







a − b + c = 6
9a + 3b + c = 6
3a − c = 0

⇐⇒







4a − b = 6
9a + 3b + c = 6
3a − c = 0

⇐⇒







4a − b = 6
12a + 3b = 6
3a − c = 0

Now divide the second equation by 3, add it to the first equation, and find the solution by back
substitution:







4a − b = 6
4a + b = 2
3a − c = 0

⇐⇒







8a = 8
4a + b = 2
3a − c = 0

⇐⇒







a = 1
4a + b = 2
3a − c = 0

⇐⇒







a = 1
b = −2
3a − c = 0

⇐⇒







a = 1
b = −2
c = 3

Thus the desired polynomial is p(x) = x2 − 2x + 3.

Problem 2 (20 pts.) Let v1 = (1, 1, 1), v2 = (1, 1, 0), and v3 = (1, 0, 1). Let L : R
3 → R

3

be a linear operator on R
3 such that L(v1) = v2, L(v2) = v3, L(v3) = v1.

(i) Show that the vectors v1,v2,v3 form a basis for R
3.

Let U be a 3 × 3 matrix such that its columns are vectors v1,v2,v3:

U =





1 1 1
1 1 0
1 0 1



 .

To find the determinant of U , we subtract the second row from the first one and then expand by the
first row:

det U =

∣

∣

∣

∣

∣

∣

0 0 1
1 1 0
1 0 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

= −1.

Since det U 6= 0, the vectors v1,v2,v3 are linearly independent. It follows that they form a basis for
R

3.
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(ii) Find the matrix of the operator L relative to the basis v1,v2,v3.

Let A denote the matrix of L relative to the basis v1,v2,v3. By definition, the columns of A are
coordinates of vectors L(v1), L(v2), L(v3) with respect to the basis v1,v2,v3. Since L(v1) = v2 =
0v1 + 1v2 + 0v3, L(v2) = v3 = 0v1 + 0v2 + 1v3, L(v3) = v1 = 1v1 + 0v2 + 0v3, we obtain

A =





0 0 1
1 0 0
0 1 0



 .

(iii) Find the matrix of the operator L relative to the standard basis.

Let S denote the matrix of L relative to the standard basis for R
3. We have S = UAU−1, where A

is the matrix of L relative to the basis v1,v2,v3 (already found) and U is the transition matrix from
v1,v2,v3 to the standard basis (the vectors v1,v2,v3 are consecutive columns of U):

A =





0 0 1
1 0 0
0 1 0



 , U =





1 1 1
1 1 0
1 0 1



 .

To find the inverse U−1, we merge the matrix U with the identity matrix I into one 3× 6 matrix and
apply row reduction to convert the left half U of this matrix into I. Simultaneously, the right half I
will be converted into U−1:

(U |I) =





1 1 1 1 0 0
1 1 0 0 1 0
1 0 1 0 0 1



 →





1 1 1 1 0 0
0 0 −1 −1 1 0
1 0 1 0 0 1



 →





1 1 1 1 0 0
0 0 −1 −1 1 0
0 −1 0 −1 0 1





→





1 1 1 1 0 0
0 −1 0 −1 0 1
0 0 −1 −1 1 0



 →





1 1 0 0 1 0
0 −1 0 −1 0 1
0 0 −1 −1 1 0



 →





1 0 0 −1 1 1
0 −1 0 −1 0 1
0 0 −1 −1 1 0





→





1 0 0 −1 1 1
0 1 0 1 0 −1
0 0 1 1 −1 0



 = (I|U−1).

Thus

S = UAU−1 =





1 1 1
1 1 0
1 0 1









0 0 1
1 0 0
0 1 0









−1 1 1
1 0 −1
1 −1 0





=





1 1 1
1 0 1
0 1 1









−1 1 1
1 0 −1
1 −1 0



 =





1 0 0
0 0 1
2 −1 −1



 .

Alternative solution: Let S denote the matrix of L relative to the standard basis e1 = (1, 0, 0), e2 =
(0, 1, 0), e3 = (0, 0, 1). By definition, the columns of S are vectors L(e1), L(e2), L(e3). It is easy to
observe that e2 = v1 − v3, e3 = v1 − v2, and e1 = v2 − e2 = −v1 + v2 + v3. Therefore

L(e1) = L(−v1 + v2 + v3) = −L(v1) + L(v2) + L(v3) = −v2 + v3 + v1 = (1, 0, 2),

L(e2) = L(v1 − v3) = L(v1) − L(v3) = v2 − v1 = (0, 0,−1),

L(e3) = L(v1 − v2) = L(v1) − L(v2) = v2 − v3 = (0, 1,−1).
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Thus

S =





1 0 0
0 0 1
2 −1 −1



 .

Problem 3 (20 pts.) Let B =





1 1 1
1 1 1
1 1 1



.

(i) Find all eigenvalues of the matrix B.

The eigenvalues of B are roots of the characteristic equation det(B − λI) = 0. One obtains that

det(B − λI) =

∣

∣

∣

∣

∣

∣

1 − λ 1 1
1 1 − λ 1
1 1 1 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ)3 − 3(1 − λ) + 2

= (1 − 3λ + 3λ2 − λ3) − 3(1 − λ) + 2 = 3λ2 − λ3 = λ2(3 − λ).

Hence the matrix B has two eigenvalues: 0 and 3.

(ii) Find a basis for R
3 consisting of eigenvectors of B?

An eigenvector x = (x, y, z) of B associated with an eigenvalue λ is a nonzero solution of the vector
equation (B − λI)x = 0. First consider the case λ = 0. We obtain that

Bx = 0 ⇐⇒





1 1 1
1 1 1
1 1 1









x
y
z



 =





0
0
0



 ⇐⇒ x + y + z = 0.

The general solution is x = −t − s, y = t, z = s, where t, s ∈ R. Equivalently, x = t(−1, 1, 0) +
s(−1, 0, 1). Hence the eigenspace of B associated with the eigenvalue 0 is two-dimensional. It is
spanned by eigenvectors v1 = (−1, 1, 0) and v2 = (−1, 0, 1).

Now consider the case λ = 3. We obtain that

(B − 3I)x = 0 ⇐⇒





−2 1 1
1 −2 1
1 1 −2









x
y
z



 =





0
0
0





⇐⇒





1 −1 0
0 1 −1
0 0 0









x
y
z



 =





0
0
0



 ⇐⇒
{

x − y = 0,
y − z = 0.

The general solution is x = y = z = t, where t ∈ R. In particular, v3 = (1, 1, 1) is an eigenvector of B
associated with the eigenvalue 3.

The vectors v1 = (−1, 1, 0), v2 = (−1, 0, 1), and v3 = (1, 1, 1) are eigenvectors of the matrix B.
They are linearly independent since the matrix whose rows are these vectors is invertible:

∣

∣

∣

∣

∣

∣

−1 1 0
−1 0 1

1 1 1

∣

∣

∣

∣

∣

∣

= 3 6= 0.

It follows that v1,v2,v3 is a basis for R
3.
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(iii) Find an orthonormal basis for R
3 consisting of eigenvectors of B?

It is easy to check that the vector v3 is orthogonal to v1 and v2. To transform the basis v1,v2,v3

into an orthogonal one, we only need to orthogonalize the pair v1,v2. Namely, we replace the vector
v2 by

u = v2 −
v2 · v1

v1 · v1

v1 = (−1, 0, 1) − 1

2
(−1, 1, 0) = (−1/2,−1/2, 1).

Now v1,u,v3 is an orthogonal basis for R
3. Since u is a linear combination of the vectors v1 and v2,

it is also an eigenvector of B associated with the eigenvalue 0.

Finally, vectors w1 =
v1

|v1|
, w2 =

u

|u| , and w3 =
v3

|v3|
form an orthonormal basis for R

3 consisting

of eigenvectors of B. We get that |v1| =
√

2, |u| =
√

3/2, and |v3| =
√

3. Thus

w1 =
1√
2
(−1, 1, 0), w2 =

1√
6
(−1,−1, 2), w3 =

1√
3
(1, 1, 1).

Problem 4 (20 pts.) Find a quadratic polynomial q that is the best least squares fit to
the function f(x) = |x| on the interval [−1, 1]. This means that q should minimize the distance

dist(f, q) =

(∫

1

−1

|f(x) − q(x)|2 dx

)1/2

over all polynomials of degree at most 2.

The above distance on C[−1, 1] is induced by the norm

‖g‖ =

(∫

1

−1

|g(x)|2 dx

)1/2

,

which, in turn, is induced by the inner product

〈g, h〉 =

∫

1

−1

g(x)h(x) dx.

It follows that the best least squares fit q is the orthogonal projection (relative to this inner product)
of the function f onto the subspace P3 of polynomials of degree less than 3. Suppose that p0, p1, p2 is
an orthogonal basis for P3. Then

q(x) =
〈f, p0〉
〈p0, p0〉

p0(x) +
〈f, p1〉
〈p1, p1〉

p1(x) +
〈f, p2〉
〈p2, p2〉

p2(x).

To get an orthogonal basis for the subspace P3, we apply the Gram-Schmidt orthogonalization process
to the basis 1, x, x2:

p0(x) = 1,

p1(x) = x − 〈x, p0〉
〈p0, p0〉

p0(x),

p2(x) = x2 − 〈x2, p0〉
〈p0, p0〉

p0(x) − 〈x2, p1〉
〈p1, p1〉

p1(x).
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Note that

〈x, p0〉 =

∫

1

−1

x dx = 0.

Hence p1(x) = x. Furthermore,

〈p0, p0〉 =

∫

1

−1

dx = 2,

〈x2, p0〉 = 〈p1, p1〉 =

∫

1

−1

x2 dx =
2

3
,

〈x2, p1〉 =

∫

1

−1

x3 dx = 0.

It follows that p2(x) = x2 − 1/3.
Now we can start computing the orthogonal projection of f onto P3:

〈f, p0〉 =

∫

1

−1

|x| dx = 2

∫

1

0

x dx = 1,

〈f, p1〉 =

∫

1

−1

|x|x dx = 0,

〈f, p2〉 =

∫

1

−1

|x|
(

x2 − 1

3

)

dx = 2

∫

1

0

(

x3 − 1

3
x
)

dx =
1

6
,

〈p2, p2〉 =

∫

1

−1

(

x2 − 1

3

)2

dx = 2

∫

1

0

(

x4 − 2

3
x2 +

1

9

)

dx =
8

45
.

Thus

q(x) =
1

2
p0(x) +

1/6

8/45
p2(x) =

1

2
+

15

16

(

x2 − 1

3

)

=
15

16
x2 +

3

16
.

Problem 5 (25 pts.) It is known that

∫

x2 sin(ax) dx =

(

−x2

a
+

2

a3

)

cos(ax) +
2x

a2
sin(ax) + C, a 6= 0.

(i) Find the Fourier sine series of the function f(x) = x2 on the interval [0, π].

The required series is
∞

∑

n=1

Bn sin(nx), where

Bn =
2

π

∫ π

0

x2 sin(nx) dx.

Using the given table integral, we obtain

Bn =
2

π

(

−x2

n
+

2

n3

)

cos(nx)
∣

∣

∣

π

0

+
2

π
· 2x

n2
sin(nx)

∣

∣

∣

π

0
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=
2

π

(

−x2

n
+

2

n3

)

cos(nx)
∣

∣

∣

π

0

= −2π

n
cos(nπ) +

4

n3π

(

cos(nπ) − 1
)

.

If n is even, then cos(nπ) = 1 and Bn = −2πn−1. If n is odd, then cos(nπ) = −1 and Bn =
2πn−1 − 8π−1n−3.

(ii) Over the interval [−3.5π, 3.5π], sketch the function to which the series converges.

The series converges to an odd 2π-periodic function that coincides with f on the interval (0, π).
The sum has jump discontinuities at points π + 2kπ, k ∈ Z. The value of the sum at the points of
discontinuity is zero.

π

π

(iii) Describe how the answer to (ii) would change if we studied the Fourier cosine series
instead.

The Fourier cosine series of the function f(x) = x2 on the interval [0, π] converges to an even
2π-periodic function that coincides with f on the interval (0, π). The sum is continuous and piecewise
smooth.

π

π
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Bonus Problem 6 (15 pts.) Solve the initial-boundary value problem for the heat
equation

∂u

∂t
=

∂2u

∂x2
(0 < x < π, t > 0),

u(x, 0) = 1 + 2 cos(2x) − cos(3x) (0 < x < π),

∂u

∂x
(0, t) =

∂u

∂x
(π, t) = 0 (t > 0).

We search for the solution of the initial-boundary value problem as a superposition of solutions
u(x, t) = φ(x)g(t) with separated variables of the heat equation that satisfy the boundary conditions.
Substituting u(x, t) = φ(x)g(t) into the heat equation, we obtain

φ(x)g′(t) = φ′′(x)g(t),

g′(t)

g(t)
=

φ′′(x)

φ(x)
.

Since the left-hand side does not depend on x while the right-hand side does not depend on t, it follows
that

g′(t)

g(t)
=

φ′′(x)

φ(x)
= −λ,

where λ is a constant. Then
g′ = −λg, φ′′ = −λφ.

Conversely, if functions g and φ are solutions of the above ODEs for the same value of λ, then
u(x, t) = φ(x)g(t) is a solution of the heat equation.

Substituting u(x, t) = φ(x)g(t) into the boundary conditions, we get

φ′(0)g(t) = φ′(π)g(t) = 0.

It is no loss to assume that g is not identically zero. Then the boundary conditions are satisfied if and
only if φ′(0) = φ′(π) = 0.

The eigenvalue problem
φ′′ = −λφ, φ′(0) = φ′(π) = 0

has eigenvalues λn = n2, n = 0, 1, 2, . . . . The associated eigenfunctions are φn(x) = cos(nx). Further,
the general solution of the equation g′ = −λg is g(t) = ce−λt, where c is an arbitrary constant. Thus
we obtain the following solutions of the heat equation that satisfy the boundary conditions:

un(x, t) = e−λntφn(x) = e−n2t cos(nx), n = 0, 1, 2, . . .

A superposition of these solutions is a series

u(x, t) =
∑∞

n=0
cne−λntφn(x) =

∑∞

n=0
cne−n2t cos(nx),

where c1, c2, . . . are constants. Substituting the series into the initial condition, we get

1 + 2 cos(2x) − cos(3x) =
∑∞

n=0
cn cos(nx).

It follows that c0 = 1, c2 = 2, c3 = −1 while the other coefficients are zeros. The solution of the
initial-boundary value problem is

u(x, t) = 1 + 2e−4t cos(2x) − e−9t cos(3x).
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