MATH 311 Topics in Applied Mathematics Lecture 5: Inverse matrix (continued). Determinants.

Inverse matrix

Definition. Let A be an $n \times n$ matrix. The **inverse** of A is an $n \times n$ matrix, denoted A^{-1} , such that

$$AA^{-1} = A^{-1}A = I.$$

If A^{-1} exists then the matrix A is called **invertible**. Otherwise A is called **singular**.

Let A and B be $n \times n$ matrices. If A is invertible then we can **divide** B by A:

left division: $A^{-1}B$, right division: BA^{-1} .

Basic properties of inverse matrices:

- The inverse matrix (if it exists) is unique.
- If A is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.
- If $n \times n$ matrices A and B are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.

• If $n \times n$ matrices A_1, A_2, \ldots, A_k are invertible, so is $A_1A_2 \ldots A_k$, and $(A_1A_2 \ldots A_k)^{-1} = A_k^{-1} \ldots A_2^{-1}A_1^{-1}$.

Inverting diagonal matrices

Theorem A diagonal matrix $D = \text{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$. If D is invertible then $D^{-1} = \text{diag}(d^{-1} = d^{-1})$

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}).$

Inverting 2-by-2 matrices

Definition. The **determinant** of a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is det A = ad - bc.

Theorem A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if det $A \neq 0$.

If det $A \neq 0$ then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Fundamental results on inverse matrices

Theorem 1 Given a square matrix *A*, the following are equivalent:

- (i) A is invertible;
- (ii) $\mathbf{x} = \mathbf{0}$ is the only solution of the matrix equation $A\mathbf{x} = \mathbf{0}$; (iii) the row echelon form of A has no zero rows;
- (iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix *A* into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1} .

Theorem 3 For any $n \times n$ matrices A and B,

 $BA = I \iff AB = I.$

Row echelon form of a square matrix:

invertible case

noninvertible case

Example.
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$
.

To check whether A is invertible, we convert it to row echelon form.

Interchange the 1st row with the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0 \end{pmatrix}$$

Add -3 times the 1st row to the 2nd row:

$$egin{pmatrix} 1 & 0 & 1 \ 0 & -2 & -3 \ -2 & 3 & 0 \end{pmatrix}$$

Add 2 times the 1st row to the 3rd row:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & -3 \\ 0 & 3 & 2 \end{pmatrix}$$

Multiply the 2nd row by -1/2:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 3 & 2 \end{pmatrix}$$

Add -3 times the 2nd row to the 3rd row:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & -2.5 \end{pmatrix}$$

Multiply the 3rd row by -2/5: $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & 1 \end{pmatrix}$

We already know that the matrix A is invertible. Let's proceed towards reduced row echelon form.

Add -3/2 times the 3rd row to the 2nd row: $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Add -1 times the 3rd row to the 1st row: $\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$ To obtain A^{-1} , we need to apply the following sequence of elementary row operations to the identity matrix:

- interchange the 1st row with the 2nd row,
- add -3 times the 1st row to the 2nd row,
- add 2 times the 1st row to the 3rd row,
- multiply the 2nd row by -1/2,
- add -3 times the 2nd row to the 3rd row,
- multiply the 3rd row by -2/5,
- add -3/2 times the 3rd row to the 2nd row,
- add -1 times the 3rd row to the 1st row.

A convenient way to compute the inverse matrix A^{-1} is to merge the matrices A and I into one 3×6 matrix $(A \mid I)$, and apply elementary row operations to this new matrix.

$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}, \qquad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$(A \mid I) = \begin{pmatrix} 3 & -2 & 0 \mid 1 & 0 & 0 \\ 1 & 0 & 1 \mid 0 & 1 & 0 \\ -2 & 3 & 0 \mid 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & -2 & 0 & | & 1 & 0 & 0 \\ 1 & 0 & 1 & | & 0 & 1 & 0 \\ -2 & 3 & 0 & | & 0 & 0 & 1 \end{pmatrix}$$

Interchange the 1st row with the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 3 & -2 & 0 & 1 & 0 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Add -3 times the 1st row to the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Add 2 times the 1st row to the 3rd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ 0 & 3 & 2 & 0 & 2 & 1 \end{pmatrix}$$

Multiply the 2nd row by -1/2:

$$\begin{pmatrix} 1 & 0 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 1.5 & | & -0.5 & 1.5 & 0 \\ 0 & 3 & 2 & | & 0 & 2 & 1 \end{pmatrix}$$

Add -3 times the 2nd row to the 3rd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & -2.5 & 1.5 & -2.5 & 1 \end{pmatrix}$$

Multiply the 3rd row by -2/5:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4 \end{pmatrix}$$

Add -3/2 times the 3rd row to the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4 \end{pmatrix}$$

Add -1 times the 3rd row to the 1st row:

$$\begin{pmatrix} 1 & 0 & 0 & 0.6 & 0 & 0.4 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4 \end{pmatrix}$$

Thus
$$\begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{3}{5} & 0 & \frac{2}{5} \\ \frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 1 & -\frac{2}{5} \end{pmatrix}$$

.

That is,

$$\begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} \frac{3}{5} & 0 & \frac{2}{5} \\ \frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 1 & -\frac{2}{5} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

 $\begin{pmatrix} \frac{3}{5} & 0 & \frac{2}{5} \\ \frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 1 & -\frac{2}{5} \end{pmatrix} \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

Why does it work?

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ 2b_1 & 2b_2 & 2b_3 \\ c_1 & c_2 & c_3 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ c_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 + 3a_1 & b_2 + 3a_2 & b_3 + 3a_3 \\ c_1 & c_2 & c_3 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 + 3a_1 & b_2 + 3a_2 & b_3 + 3a_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 + 3a_1 & b_2 + 3a_2 & b_3 + 3a_3 \\ c_1 & c_2 & c_3 \end{pmatrix},$$

Proposition Any elementary row operation can be simulated as left multiplication by a certain matrix.

Why does it work?

Assume that a square matrix A can be converted to the identity matrix by a sequence of elementary row operations. Then

$$E_k E_{k-1} \dots E_2 E_1 A = I,$$

where E_1, E_2, \ldots, E_k are matrices simulating those operations.

Applying the same sequence of operations to the identity matrix, we obtain the matrix

$$B=E_kE_{k-1}\ldots E_2E_1I=E_kE_{k-1}\ldots E_2E_1.$$

Thus BA = I, which implies that $B = A^{-1}$.

Determinants

Determinant is a scalar assigned to each square matrix. *Notation.* The determinant of a matrix

 $A = (a_{ij})_{1 \leq i,j \leq n}$ is denoted det A or

a_{11}	a_{12}	•••	a _{1n}	
a_{21}	<i>a</i> ₂₂	•••	a _{2n}	
÷	÷	•••	÷	•
a_{n1}	<i>a</i> _{n2}		a _{nn}	

Principal property: det A = 0 if and only if the matrix A is singular.

Definition in low dimensions

Definition. det (a) = a,
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
, $\begin{vmatrix} a_{11} & a_{12} & a_{13} \end{vmatrix}$

 $\begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$

Examples: 2×2 matrices

$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1, \qquad \begin{vmatrix} 3 & 0 \\ 0 & -4 \end{vmatrix} = -12,$$
$$\begin{vmatrix} -2 & 5 \\ 0 & 3 \end{vmatrix} = -6, \qquad \begin{vmatrix} 7 & 0 \\ 5 & 2 \end{vmatrix} = 14,$$
$$\begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} = 1, \qquad \begin{vmatrix} 0 & 0 \\ 4 & 1 \end{vmatrix} = 0,$$
$$\begin{vmatrix} -1 & 3 \\ -1 & 3 \end{vmatrix} = 0, \qquad \begin{vmatrix} 2 & 1 \\ 8 & 4 \end{vmatrix} = 0.$$

Examples: 3×3 matrices

$$\begin{vmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{vmatrix} = 3 \cdot 0 \cdot 0 + (-2) \cdot 1 \cdot (-2) + 0 \cdot 1 \cdot 3 - - 0 \cdot 0 \cdot (-2) - (-2) \cdot 1 \cdot 0 - 3 \cdot 1 \cdot 3 = 4 - 9 = -5,$$

$$\begin{vmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{vmatrix} = 1 \cdot 2 \cdot 3 + 4 \cdot 5 \cdot 0 + 6 \cdot 0 \cdot 0 - - 6 \cdot 2 \cdot 0 - 4 \cdot 0 \cdot 3 - 1 \cdot 5 \cdot 0 = 1 \cdot 2 \cdot 3 = 6$$

General definition

The general definition of the determinant is quite complicated as there is no simple explicit formula.

There are several approaches to defining determinants.

Approach 1 (original): an explicit (but very complicated) formula.

Approach 2 (axiomatic): we formulate properties that the determinant should have.

Approach 3 (inductive): the determinant of an $n \times n$ matrix is defined in terms of determinants of certain $(n-1) \times (n-1)$ matrices.

 $\mathcal{M}_n(\mathbb{R})$: the set of $n \times n$ matrices with real entries.

Theorem There exists a unique function det : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ (called the determinant) with the following properties:

• if a row of a matrix is multiplied by a scalar r, the determinant is also multiplied by r;

• if we add a row of a matrix multiplied by a scalar to another row, the determinant remains the same;

- if we interchange two rows of a matrix, the determinant changes its sign;
 - det I = 1.

Corollary det A = 0 if and only if the matrix A is singular.

Row echelon form of a square matrix A:

 $\det A \neq 0 \qquad \qquad \det A = 0$

Example.
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$
, det $A = ?$

Earlier we have transformed the matrix A into the identity matrix using elementary row operations.

- interchange the 1st row with the 2nd row,
- add -3 times the 1st row to the 2nd row,
- add 2 times the 1st row to the 3rd row,
- multiply the 2nd row by -1/2,
- add -3 times the 2nd row to the 3rd row,
- multiply the 3rd row by -2/5,
- add -3/2 times the 3rd row to the 2nd row,
- add -1 times the 3rd row to the 1st row.

Example.
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$
, det $A = ?$

Earlier we have transformed the matrix A into the identity matrix using elementary row operations.

These included two row multiplications, by -1/2 and by -2/5, and one row exchange.

It follows that

det
$$I = -(-\frac{1}{2})(-\frac{2}{5})$$
 det $A = -\frac{1}{5}$ det A .
Hence det $A = -5$ det $I = -5$.

Other properties of determinants

• If a matrix A has two identical rows then det A = 0.

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{vmatrix} = 0$$

• If a matrix A has two rows proportional then det A = 0.

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ ra_1 & ra_2 & ra_3 \end{vmatrix} = r \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{vmatrix} = 0$$

Distributive law for rows

• Suppose that matrices X, Y, Z are identical except for the *i*th row and the *i*th row of Z is the sum of the *i*th rows of X and Y.

Then det $Z = \det X + \det Y$.

$$\begin{vmatrix} a_1 + a_1' & a_2 + a_2' & a_3 + a_3' \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} a_1' & a_2' & a_3' \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

• Adding a scalar multiple of one row to another row does not change the determinant of a matrix.

$$\begin{vmatrix} a_1 + rb_1 & a_2 + rb_2 & a_3 + rb_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} =$$
$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} rb_1 & rb_2 & rb_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Definition. A square matrix $A = (a_{ij})$ is called upper triangular if all entries below the main diagonal are zeros: $a_{ij} = 0$ whenever i > j.

• The determinant of an upper triangular matrix is equal to the product of its diagonal entries.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}$$

• If $A = \text{diag}(d_1, d_2, \dots, d_n)$ then det $A = d_1 d_2 \dots d_n$. In particular, det I = 1.