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Lecture 5:
Inverse matrix (continued).

Determinants.



Inverse matrix

Definition. Let A be an n×n matrix. The inverse
of A is an n×n matrix, denoted A−1, such that

AA−1 = A−1A = I .

If A−1 exists then the matrix A is called invertible.
Otherwise A is called singular.

Let A and B be n×n matrices. If A is invertible
then we can divide B by A:

left division: A−1B, right division: BA−1.



Basic properties of inverse matrices:

• The inverse matrix (if it exists) is unique.

• If A is invertible, so is A−1, and (A−1)−1 = A.

• If n×n matrices A and B are invertible, so is
AB , and (AB)−1 = B−1A−1.

• If n×n matrices A1, A2, . . . , Ak are invertible, so
is A1A2 . . . Ak , and (A1A2 . . . Ak)

−1 = A−1

k . . . A−1

2
A−1

1
.



Inverting diagonal matrices

Theorem A diagonal matrix D = diag(d1, . . . , dn)
is invertible if and only if all diagonal entries are
nonzero: di 6= 0 for 1 ≤ i ≤ n.

If D is invertible then D−1 = diag(d−1

1
, . . . , d−1

n ).











d1 0 . . . 0
0 d2 . . . 0
...

... . . . ...
0 0 . . . dn











−1

=











d−1

1
0 . . . 0

0 d−1

2
. . . 0

...
... . . . ...

0 0 . . . d−1

n













Inverting 2-by-2 matrices

Definition. The determinant of a 2×2 matrix

A =

(

a b

c d

)

is det A = ad − bc .

Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if det A 6= 0.

If det A 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.



Fundamental results on inverse matrices

Theorem 1 Given a square matrix A, the following are
equivalent:

(i) A is invertible;
(ii) x = 0 is the only solution of the matrix equation Ax = 0;
(iii) the row echelon form of A has no zero rows;
(iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row
operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity
matrix into the inverse matrix A−1.

Theorem 3 For any n×n matrices A and B ,

BA = I ⇐⇒ AB = I .



Row echelon form of a square matrix:































∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗





























































∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗































invertible case noninvertible case



Example. A =





3 −2 0
1 0 1

−2 3 0



.

To check whether A is invertible, we convert it to row echelon

form.

Interchange the 1st row with the 2nd row:




1 0 1
3 −2 0

−2 3 0





Add −3 times the 1st row to the 2nd row:




1 0 1
0 −2 −3

−2 3 0







Add 2 times the 1st row to the 3rd row:




1 0 1
0 −2 −3
0 3 2





Multiply the 2nd row by −1/2:




1 0 1
0 1 1.5
0 3 2





Add −3 times the 2nd row to the 3rd row:




1 0 1
0 1 1.5
0 0 −2.5







Multiply the 3rd row by −2/5:




1 0 1

0 1 1.5

0 0 1





We already know that the matrix A is invertible.

Let’s proceed towards reduced row echelon form.

Add −3/2 times the 3rd row to the 2nd row:




1 0 1
0 1 0
0 0 1





Add −1 times the 3rd row to the 1st row:




1 0 0
0 1 0
0 0 1







To obtain A−1, we need to apply the following
sequence of elementary row operations to the
identity matrix:

• interchange the 1st row with the 2nd row,
• add −3 times the 1st row to the 2nd row,
• add 2 times the 1st row to the 3rd row,
• multiply the 2nd row by −1/2,
• add −3 times the 2nd row to the 3rd row,
• multiply the 3rd row by −2/5,
• add −3/2 times the 3rd row to the 2nd row,
• add −1 times the 3rd row to the 1st row.



A convenient way to compute the inverse matrix
A−1 is to merge the matrices A and I into one 3×6
matrix (A | I ), and apply elementary row operations
to this new matrix.

A =





3 −2 0
1 0 1

−2 3 0



, I =





1 0 0
0 1 0
0 0 1





(A | I ) =





3 −2 0 1 0 0
1 0 1 0 1 0

−2 3 0 0 0 1











3 −2 0 1 0 0
1 0 1 0 1 0

−2 3 0 0 0 1





Interchange the 1st row with the 2nd row:




1 0 1 0 1 0
3 −2 0 1 0 0

−2 3 0 0 0 1





Add −3 times the 1st row to the 2nd row:




1 0 1 0 1 0
0 −2 −3 1 −3 0

−2 3 0 0 0 1







Add 2 times the 1st row to the 3rd row:




1 0 1 0 1 0
0 −2 −3 1 −3 0
0 3 2 0 2 1





Multiply the 2nd row by −1/2:




1 0 1 0 1 0
0 1 1.5 −0.5 1.5 0
0 3 2 0 2 1





Add −3 times the 2nd row to the 3rd row:




1 0 1 0 1 0
0 1 1.5 −0.5 1.5 0
0 0 −2.5 1.5 −2.5 1







Multiply the 3rd row by −2/5:




1 0 1 0 1 0
0 1 1.5 −0.5 1.5 0
0 0 1 −0.6 1 −0.4





Add −3/2 times the 3rd row to the 2nd row:




1 0 1 0 1 0
0 1 0 0.4 0 0.6
0 0 1 −0.6 1 −0.4





Add −1 times the 3rd row to the 1st row:




1 0 0 0.6 0 0.4
0 1 0 0.4 0 0.6
0 0 1 −0.6 1 −0.4







Thus





3 −2 0
1 0 1

−2 3 0





−1

=







3

5
0 2

5

2

5
0 3

5

−3

5
1 −2

5






.

That is,




3 −2 0
1 0 1

−2 3 0











3

5
0 2

5

2

5
0 3

5

−3

5
1 −2

5






=





1 0 0
0 1 0
0 0 1



,







3

5
0 2

5

2

5
0 3

5

−3

5
1 −2

5











3 −2 0
1 0 1

−2 3 0



 =





1 0 0
0 1 0
0 0 1



.



Why does it work?




1 0 0
0 2 0
0 0 1









a1 a2 a3

b1 b2 b3

c1 c2 c3



 =





a1 a2 a3

2b1 2b2 2b3

c1 c2 c3



,





1 0 0
3 1 0
0 0 1









a1 a2 a3

b1 b2 b3

c1 c2 c3



=





a1 a2 a3

b1+3a1 b2+3a2 b3+3a3

c1 c2 c3



,





1 0 0
0 0 1
0 1 0









a1 a2 a3

b1 b2 b3

c1 c2 c3



 =





a1 a2 a3

c1 c2 c3

b1 b2 b3



.

Proposition Any elementary row operation can be
simulated as left multiplication by a certain matrix.



Why does it work?

Assume that a square matrix A can be converted to
the identity matrix by a sequence of elementary row
operations. Then

EkEk−1 . . . E2E1A = I ,

where E1, E2, . . . , Ek are matrices simulating those
operations.

Applying the same sequence of operations to the
identity matrix, we obtain the matrix

B = EkEk−1 . . . E2E1I = EkEk−1 . . . E2E1.

Thus BA = I , which implies that B = A−1.



Determinants

Determinant is a scalar assigned to each square matrix.

Notation. The determinant of a matrix
A = (aij)1≤i ,j≤n is denoted det A or

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
an1 an2 . . . ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Principal property: det A = 0 if and only if the
matrix A is singular.



Definition in low dimensions

Definition. det (a) = a,

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad − bc ,
∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

= a11a22a33 + a12a23a31 + a13a21a32−

−a13a22a31 − a12a21a33 − a11a23a32.

+ :







* ∗ ∗

∗ * ∗

∗ ∗ *






,







∗ * ∗

∗ ∗ *

* ∗ ∗






,







∗ ∗ *

* ∗ ∗

∗ * ∗






.

− :







∗ ∗ *

∗ * ∗

* ∗ ∗






,







∗ * ∗

* ∗ ∗

∗ ∗ *






,







* ∗ ∗

∗ ∗ *

∗ * ∗






.



Examples: 2×2 matrices

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

= 1,

∣

∣

∣

∣

3 0
0 −4

∣

∣

∣

∣

= − 12,

∣

∣

∣

∣

−2 5
0 3

∣

∣

∣

∣

= − 6,

∣

∣

∣

∣

7 0
5 2

∣

∣

∣

∣

= 14,

∣

∣

∣

∣

0 −1
1 0

∣

∣

∣

∣

= 1,

∣

∣

∣

∣

0 0
4 1

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

−1 3
−1 3

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

2 1
8 4

∣

∣

∣

∣

= 0.



Examples: 3×3 matrices
∣

∣

∣

∣

∣

∣

3 −2 0
1 0 1

−2 3 0

∣

∣

∣

∣

∣

∣

= 3 · 0 · 0 + (−2) · 1 · (−2) + 0 · 1 · 3−

− 0 · 0 · (−2)− (−2) · 1 · 0− 3 · 1 · 3 = 4− 9 = −5,

∣

∣

∣

∣

∣

∣

1 4 6
0 2 5
0 0 3

∣

∣

∣

∣

∣

∣

= 1 · 2 · 3 + 4 · 5 · 0 + 6 · 0 · 0 −

− 6 · 2 · 0 − 4 · 0 · 3 − 1 · 5 · 0 = 1 · 2 · 3 = 6.



General definition

The general definition of the determinant is quite
complicated as there is no simple explicit formula.

There are several approaches to defining determinants.

Approach 1 (original): an explicit (but very
complicated) formula.

Approach 2 (axiomatic): we formulate
properties that the determinant should have.

Approach 3 (inductive): the determinant of an
n×n matrix is defined in terms of determinants of
certain (n − 1)×(n − 1) matrices.



Mn(R): the set of n×n matrices with real entries.

Theorem There exists a unique function
det : Mn(R) → R (called the determinant) with the
following properties:
• if a row of a matrix is multiplied by a scalar r ,

the determinant is also multiplied by r ;
• if we add a row of a matrix multiplied by a scalar
to another row, the determinant remains the same;
• if we interchange two rows of a matrix, the

determinant changes its sign;
• det I = 1.

Corollary det A = 0 if and only if the matrix A is
singular.



Row echelon form of a square matrix A:































∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗





























































∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗































det A 6= 0 det A = 0



Example. A =





3 −2 0
1 0 1

−2 3 0



, det A =?

Earlier we have transformed the matrix A into the
identity matrix using elementary row operations.

• interchange the 1st row with the 2nd row,
• add −3 times the 1st row to the 2nd row,
• add 2 times the 1st row to the 3rd row,
• multiply the 2nd row by −1/2,
• add −3 times the 2nd row to the 3rd row,
• multiply the 3rd row by −2/5,
• add −3/2 times the 3rd row to the 2nd row,
• add −1 times the 3rd row to the 1st row.



Example. A =





3 −2 0
1 0 1

−2 3 0



, det A =?

Earlier we have transformed the matrix A into the
identity matrix using elementary row operations.

These included two row multiplications, by −1/2
and by −2/5, and one row exchange.

It follows that

det I = −
(

−1

2

) (

−2

5

)

det A = −1

5
det A.

Hence det A = −5 det I = −5.



Other properties of determinants

• If a matrix A has two identical rows then
det A = 0.

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

a1 a2 a3

∣

∣

∣

∣

∣

∣

= 0

• If a matrix A has two rows proportional then
det A = 0.

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

ra1 ra2 ra3

∣

∣

∣

∣

∣

∣

= r

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

a1 a2 a3

∣

∣

∣

∣

∣

∣

= 0



Distributive law for rows

• Suppose that matrices X , Y , Z are identical
except for the ith row and the ith row of Z is the
sum of the ith rows of X and Y .

Then det Z = det X + det Y .

∣

∣

∣

∣

∣

∣

a1+a′
1

a2+a′
2

a3+a′
3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a′
1

a′
2

a′
3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣



• Adding a scalar multiple of one row to another
row does not change the determinant of a matrix.

∣

∣

∣

∣

∣

∣

a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

rb1 rb2 rb3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣



Definition. A square matrix A = (aij) is called
upper triangular if all entries below the main
diagonal are zeros: aij = 0 whenever i > j .

• The determinant of an upper triangular matrix is
equal to the product of its diagonal entries.

∣

∣

∣

∣

∣

∣

a11 a12 a13

0 a22 a23

0 0 a33

∣

∣

∣

∣

∣

∣

= a11a22a33

• If A = diag(d1, d2, . . . , dn) then
det A = d1d2 . . . dn. In particular, det I = 1.


