MATH 311

Topics in Applied Mathematics

Lecture 12:
 Change of coordinates (continued). Review for Test 1.

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The mapping

$$
\text { vector } \mathbf{v} \mapsto \text { its coordinates }\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

is a one-to-one correspondence between V and \mathbb{R}^{n}. This correspondence respects linear operations in V and in \mathbb{R}^{n}.

Change of coordinates in \mathbb{R}^{n}

The usual (standard) coordinates of a vector $\mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ are coordinates relative to the standard basis $\mathbf{e}_{1}=(1,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1, \ldots, 0,0), \ldots$, $\mathbf{e}_{n}=(0,0, \ldots, 0,1)$.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for \mathbb{R}^{n} and $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ be the coordinates of the same vector \mathbf{v} with respect to this basis.

Problem 1. Given the standard coordinates

 $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, find the nonstandard coordinates $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$.Problem 2. Given the nonstandard coordinates $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$, find the standard coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

It turns out that

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
u_{21} & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n 1} & u_{n 2} & \ldots & u_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right) .
$$

The matrix $U=\left(u_{i j}\right)$ does not depend on the vector \mathbf{x}.
Columns of U are coordinates of vectors
$\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ with respect to the standard basis.
U is called the transition matrix from the basis
$\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ to the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$.
This solves Problem 2. To solve Problem 1, we have to use the inverse matrix U^{-1}, which is the transition matrix from $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$.

Problem. Find coordinates of the vector $\mathbf{x}=(1,2,3)$ with respect to the basis $\mathbf{u}_{1}=(1,1,0), \mathbf{u}_{2}=(0,1,1), \mathbf{u}_{3}=(1,1,1)$.
The nonstandard coordinates $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ of \mathbf{x} satisfy

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=U\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),
$$

where U is the transition matrix from the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.

The transition matrix from $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is

$$
U_{0}=\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)=\left(\begin{array}{l|l|l}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) .
$$

The transition matrix from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is the inverse matrix: $U=U_{0}^{-1}$.

The inverse matrix can be computed using row reduction.
$\left(U_{0} \mid I\right)=\left(\begin{array}{lll|lll}1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right)$
$\rightarrow\left(\begin{array}{rrr|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{lll|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1\end{array}\right)$
$\rightarrow\left(\begin{array}{rrr|rrr}1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1\end{array}\right)=\left(I \mid U_{0}^{-1}\right)$
Thus

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right) .
$$

Change of coordinates: general case

Let V be a vector space.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for V and $g_{2}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ g_{1}^{-1}$ is a transformation of \mathbb{R}^{n}. It has the form $\mathbf{x} \mapsto U \mathbf{x}$, where U is an $n \times n$ matrix. U is called the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \mathbf{u}_{2} \ldots, \mathbf{u}_{n}$. Columns of U are coordinates of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$.

Problem. Find the transition matrix from the basis $p_{1}(x)=1, p_{2}(x)=x+1, p_{3}(x)=(x+1)^{2}$ to the basis $q_{1}(x)=1, q_{2}(x)=x, q_{3}(x)=x^{2}$ for the vector space \mathcal{P}_{3}.

We have to find coordinates of the polynomials p_{1}, p_{2}, p_{3} with respect to the basis q_{1}, q_{2}, q_{3} :
$p_{1}(x)=1=q_{1}(x)$,
$p_{2}(x)=x+1=q_{1}(x)+q_{2}(x)$,
$p_{3}(x)=(x+1)^{2}=x^{2}+2 x+1=q_{1}(x)+2 q_{2}(x)+q_{3}(x)$.
Thus the transition matrix is $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$.

Problem. Find the transition matrix from the basis $\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(1,0,1), \mathbf{v}_{3}=(1,2,1)$ to the basis $\mathbf{u}_{1}=(1,1,0), \mathbf{u}_{2}=(0,1,1), \mathbf{u}_{3}=(1,1,1)$.

It is convenient to make a two-step transition: first from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$, and then from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.
Let U_{1} be the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ and U_{2} be the transition matrix from $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$:

$$
U_{1}=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right), \quad U_{2}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Then the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is $U_{2}^{-1} U_{1}$.

$$
\begin{gathered}
U_{2}^{-1} U_{1}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right) \\
=\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right)=\left(\begin{array}{rrr}
-1 & -1 & 1 \\
1 & -1 & 1 \\
2 & 2 & 0
\end{array}\right) .
\end{gathered}
$$

Topics for Test 1

Part I: Elementary linear algebra (Leon 1.1-1.4, 2.1-2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.
- Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for Test 1

Part II: Abstract linear algebra (Leon 3.1-3.4, 3.6)

- Vector spaces (vectors, matrices, polynomials, functional spaces).
- Subspaces. Nullspace, column space, and row space of a matrix.
- Span, spanning set. Linear independence.
- Bases and dimension.
- Rank and nullity of a matrix.

Sample problems for Test 1

Problem 1 (15 pts.) Find the point of intersection of the planes $x+2 y-z=1, x-3 y=-5$, and $2 x+y+z=0$ in \mathbb{R}^{3}.

Problem 2 (25 pts.) Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.
(ii) Find the inverse matrix A^{-1}.

Problem 3 (20 pts.) Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.

Problem 4 (30 pts.) Let $B=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(i) Find the rank and the nullity of the matrix B.
(ii) Find a basis for the row space of B, then extend this basis to a basis for \mathbb{R}^{4}.
(iii) Find a basis for the nullspace of B.

Bonus Problem 5 (15 pts.) Show that the functions $f_{1}(x)=x, f_{2}(x)=x e^{x}$, and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Bonus Problem 6 (15 pts.) Let V be a finite-dimensional vector space and V_{0} be a proper subspace of V (where proper means that $V_{0} \neq V$). Prove that $\operatorname{dim} V_{0}<\operatorname{dim} V$.

Problem 1. Find the point of intersection of the planes $x+2 y-z=1, x-3 y=-5$, and $2 x+y+z=0$ in \mathbb{R}^{3}.

The intersection point (x, y, z) is a solution of the system

$$
\left\{\begin{array}{l}
x+2 y-z=1, \\
x-3 y=-5, \\
2 x+y+z=0 .
\end{array}\right.
$$

To solve the system, we convert its augmented matrix into reduced row echelon form using elementary row operations:

$$
\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
1 & -3 & 0 & -5 \\
2 & 1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -5 & 1 & -6 \\
2 & 1 & 1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
\rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -5 & 1 & -6 \\
2 & 1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -5 & 1 & -6 \\
0 & -3 & 3 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -3 & 3 & -2 \\
0 & -5 & 1 & -6
\end{array}\right) \\
\rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -1 & \frac{2}{3} \\
0 & -5 & 1 & -6
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -1 & \frac{2}{3} \\
0 & 0 & -4 & -\frac{8}{3}
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -1 & \frac{2}{3} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right) \\
\rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & 0 & \frac{4}{3} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right) \rightarrow\left(\begin{array}{lll|r}
1 & 2 & 0 & \frac{5}{3} \\
0 & 1 & 0 & \frac{4}{3} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & \frac{4}{3} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right) .
\end{aligned}
$$

Thus the three planes intersect at the point $\left(-1, \frac{4}{3}, \frac{2}{3}\right)$.

Problem 1. Find the point of intersection of the planes $x+2 y-z=1, x-3 y=-5$, and $2 x+y+z=0$ in \mathbb{R}^{3}.

Alternative solution: The intersection point (x, y, z) is a solution of the system

$$
\left\{\begin{array}{l}
x+2 y-z=1 \\
x-3 y=-5 \\
2 x+y+z=0
\end{array}\right.
$$

Add all three equations: $4 x=-4 \Longrightarrow x=-1$.
Substitute $x=-1$ into the 2 nd equation: $\Longrightarrow y=\frac{4}{3}$.
Substitute $x=-1$ and $y=\frac{4}{3}$ into the 3rd equation:
$\Longrightarrow z=\frac{2}{3}$.
It remains to check that $x=-1, y=\frac{4}{3}, z=\frac{2}{3}$ is indeed a solution of the system.

Problem 2. Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.

Subtract the 4th row of A from the 3rd row:

$$
\left|\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
2 & 0 & -1 & 1 \\
2 & 0 & 0 & 1
\end{array}\right|=\left|\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
0 & 0 & -1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right| .
$$

Expand the determinant by the 3rd row:

$$
\left|\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
0 & 0 & -1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right|=(-1)\left|\begin{array}{rrr}
1 & -2 & 1 \\
2 & 3 & 0 \\
2 & 0 & 1
\end{array}\right| .
$$

Expand the determinant by the 3rd column:

$$
(-1)\left|\begin{array}{rrr}
1 & -2 & 1 \\
2 & 3 & 0 \\
2 & 0 & 1
\end{array}\right|=(-1)\left(\left|\begin{array}{ll}
2 & 3 \\
2 & 0
\end{array}\right|+\left|\begin{array}{rr}
1 & -2 \\
2 & 3
\end{array}\right|\right)=-1
$$

Problem 2. Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(ii) Find the inverse matrix A^{-1}.

First we merge the matrix A with the identity matrix into one 4×8 matrix

$$
(A \mid I)=\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix.

Subtract 2 times the 1 st row from the 2 nd row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Subtract 2 times the 1st row from the 3rd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\ 0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right)$
Subtract 2 times the 1st row from the 4th row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\ 0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\ 0 & 4 & -8 & -1 & -2 & 0 & 0 & 1\end{array}\right)$

Subtract 2 times the 4th row from the 2 nd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\ 0 & 4 & -8 & -1 & -2 & 0 & 0 & 1\end{array}\right)$
Subtract the 4th row from the 3rd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 4 & -8 & -1 & -2 & 0 & 0 & 1\end{array}\right)$
Add 4 times the 2 nd row to the 4th row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 32 & -1 & 6 & 4 & 0 & -7\end{array}\right)$

Add 32 times the 3rd row to the 4th row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 6 & 4 & 32 & -39\end{array}\right)$
Add 10 times the 3 rd row to the 2 nd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 6 & 4 & 32 & -39\end{array}\right)$
Add the 4th row to the 1st row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 0 & 7 & 4 & 32 & -39 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right)
$$

Add 4 times the 3 rd row to the 1 st row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 0 & 0 & 7 & 4 & 36 & -43 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right)
$$

Subtract 2 times the 2 nd row from the 1st row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right)
$$

Multiply the 2 nd, the 3 rd, and the 4 th rows by -1 :

$$
\left(\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{array}\right)
$$

$$
\left(\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{array}\right)=\left(I \mid A^{-1}\right)
$$

Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of A. Thus

$$
A^{-1}=\left(\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
2 & 0 & -1 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{rrrr}
3 & 2 & 16 & -19 \\
-2 & -1 & -10 & 12 \\
0 & 0 & -1 & 1 \\
-6 & -4 & -32 & 39
\end{array}\right) .
$$

Problem 2. Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.

Alternative solution: We have transformed A into the identity matrix using elementary row operations. These included no row exchanges and three row multiplications, each time by -1 .

It follows that $\operatorname{det} I=(-1)^{3} \operatorname{det} A$.
$\Longrightarrow \operatorname{det} A=-\operatorname{det} I=-1$.

Problem 3. Determine which of the following

 subsets of \mathbb{R}^{3} are subspaces. Briefly explain.A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
$(0,0,0) \in S_{1} \Longrightarrow S_{1}$ is not empty.
$x y z=0 \Longrightarrow(r x)(r y)(r z)=r^{3} x y z=0$.
That is, $\mathbf{v}=(x, y, z) \in S_{1} \Longrightarrow r \mathbf{v}=(r x, r y, r z) \in S_{1}$.
Hence S_{1} is closed under scalar multiplication.
However S_{1} is not closed under addition.
Counterexample: $(1,1,0)+(0,0,1)=(1,1,1)$.

Problem 3. Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.

A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
$(0,0,0) \in S_{2} \Longrightarrow S_{2}$ is not empty.
$x+y+z=0 \Longrightarrow r x+r y+r z=r(x+y+z)=0$. Hence S_{2} is closed under scalar multiplication.
$x+y+z=x^{\prime}+y^{\prime}+z^{\prime}=0 \Longrightarrow$
$\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)+\left(z+z^{\prime}\right)=(x+y+z)+\left(x^{\prime}+y^{\prime}+z^{\prime}\right)=0$.
That is, $\mathbf{v}=(x, y, z), \mathbf{v}^{\prime}=(x, y, z) \in S_{2}$

$$
\Longrightarrow \mathbf{v}+\mathbf{v}^{\prime}=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right) \in S_{2} .
$$

Hence S_{2} is closed under addition.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
$y^{2}+z^{2}=0 \Longleftrightarrow y=z=0$.
S_{3} is a nonempty set closed under addition and scalar multiplication.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.
S_{4} is a nonempty set closed under scalar multiplication. However S_{4} is not closed under addition.
Counterexample: $(0,1,1)+(0,1,-1)=(0,2,0)$.

Problem 4. Let $B=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(i) Find the rank and the nullity of the matrix B.

The rank (= dimension of the row space) and the nullity (= dimension of the nullspace) of a matrix are preserved under elementary row operations. We apply such operations to convert the matrix B into row echelon form.

Interchange the 1st row with the 2nd row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$

Add 3 times the 1 st row to the 3 rd row, then subtract 2 times the 1st row from the 4th row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ 0 & 3 & 5 & -3 \\ 2 & -1 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ 0 & 3 & 5 & -3 \\ 0 & -3 & -4 & 3\end{array}\right)$
Multiply the 2 nd row by -1 :
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 3 & 5 & -3 \\ 0 & -3 & -4 & 3\end{array}\right)$
Add the 4th row to the 3rd row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -3 & -4 & 3\end{array}\right)$

Add 3 times the 2 nd row to the 4 th row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -16 & 0\end{array}\right)$
Add 16 times the 3rd row to the 4th row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
Now that the matrix is in row echelon form, its rank equals the number of nonzero rows, which is 3 . Since
(rank of $B)+($ nullity of $B)=($ the number of columns of $B)=4$, it follows that the nullity of B equals 1 .

Problem 4. Let $B=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(ii) Find a basis for the row space of B, then extend this basis to a basis for \mathbb{R}^{4}.

The row space of a matrix is invariant under elementary row operations. Therefore the row space of the matrix B is the same as the row space of its row echelon form:

$$
\left(\begin{array}{rrrr}
0 & -1 & 4 & 1 \\
1 & 1 & 2 & -1 \\
-3 & 0 & -1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The nonzero rows of the latter matrix are linearly independent so that they form a basis for its row space:

$$
\mathbf{v}_{1}=(1,1,2,-1), \quad \mathbf{v}_{2}=(0,1,-4,-1), \quad \mathbf{v}_{3}=(0,0,1,0) .
$$

To extend the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to a basis for \mathbb{R}^{4}, we need a vector $\mathbf{v}_{4} \in \mathbb{R}^{4}$ that is not a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. It is known that at least one of the vectors $\mathbf{e}_{1}=(1,0,0,0)$, $\mathbf{e}_{2}=(0,1,0,0), \mathbf{e}_{3}=(0,0,1,0)$, and $\mathbf{e}_{4}=(0,0,0,1)$ can be chosen as \mathbf{v}_{4}.
In particular, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{e}_{4}$ form a basis for \mathbb{R}^{4}. This follows from the fact that the 4×4 matrix whose rows are these vectors is not singular:

$$
\left|\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=1 \neq 0 .
$$

Problem 4. Let $B=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(iii) Find a basis for the nullspace of B.

The nullspace of B is the solution set of the system of linear homogeneous equations with B as the coefficient matrix. To solve the system, we convert B to reduced row echelon form:

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \Longrightarrow \quad x_{1}=x_{2}-x_{4}=x_{3}=0
\end{aligned}
$$

General solution: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0, t, 0, t)=t(0,1,0,1)$.
Thus the vector $(0,1,0,1)$ forms a basis for the nullspace of B.

Bonus Problem 5. Show that the functions $f_{1}(x)=x$, $f_{2}(x)=x e^{x}$, and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Suppose that $a f_{1}(x)+b f_{2}(x)+c f_{3}(x)=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.
Let us differentiate the identity 4 times:

$$
\begin{gathered}
a x+b x e^{x}+c e^{-x}=0, \\
a+b e^{x}+b x e^{x}-c e^{-x}=0, \\
2 b e^{x}+b x e^{x}+c e^{-x}=0, \\
3 b e^{x}+b x e^{x}-c e^{-x}=0, \\
4 b e^{x}+b x e^{x}+c e^{-x}=0 .
\end{gathered}
$$

(the 5th identity)-(the 3rd identity): $2 b e^{x}=0 \Longrightarrow b=0$.
Substitute $b=0$ in the 3rd identity: $c e^{-x}=0 \Longrightarrow c=0$.
Substitute $b=c=0$ in the 2nd identity: $a=0$.

Bonus Problem 5. Show that the functions $f_{1}(x)=x$, $f_{2}(x)=x e^{x}$, and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Alternative solution: Suppose that $a x+b x e^{x}+c e^{-x}=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.

For any $x \neq 0$ divide both sides of the identity by $x e^{x}$:

$$
a e^{-x}+b+c x^{-1} e^{-2 x}=0 .
$$

The left-hand side approaches b as $x \rightarrow+\infty . \quad \Longrightarrow b=0$ Now $a x+c e^{-x}=0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x :

$$
a+c x^{-1} e^{-x}=0 .
$$

The left-hand side approaches a as $x \rightarrow+\infty$. $\Longrightarrow a=0$

Now $c e^{-x}=0 \Longrightarrow c=0$.

Bonus Problem 6. Let V be a finite-dimensional vector space and V_{0} be a proper subspace of V (where proper means that $\left.V_{0} \neq V\right)$. Prove that $\operatorname{dim} V_{0}<\operatorname{dim} V$.

Any vector space has a basis. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be a basis for V_{0}.
Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent in V since they are linearly independent in V_{0}. Therefore we can extend this collection of vectors to a basis for V by adding some vectors $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$. As $V_{0} \neq V$, we do need to add some vectors, i.e., $m \geq 1$.

Thus $\operatorname{dim} V_{0}=k$ and $\operatorname{dim} V=k+m>k$.

