MATH 311 Topics in Applied Mathematics Lecture 12: Change of coordinates (continued). Review for Test 1.

Basis and coordinates

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$\mathbf{v}=x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots+x_n\mathbf{v}_n,$$

where $x_i \in \mathbb{R}$. The coefficients x_1, x_2, \ldots, x_n are called the **coordinates** of **v** with respect to the ordered basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

The mapping

vector $\mathbf{v} \mapsto its$ coordinates (x_1, x_2, \dots, x_n)

is a one-to-one correspondence between V and \mathbb{R}^n . This correspondence respects linear operations in V and in \mathbb{R}^n .

Change of coordinates in \mathbb{R}^n

The usual (standard) coordinates of a vector $\mathbf{v} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ are coordinates relative to the standard basis $\mathbf{e}_1 = (1, 0, \dots, 0, 0)$, $\mathbf{e}_2 = (0, 1, \dots, 0, 0)$,..., $\mathbf{e}_n = (0, 0, \dots, 0, 1)$.

Let $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ be another basis for \mathbb{R}^n and $(x'_1, x'_2, \ldots, x'_n)$ be the coordinates of the same vector \mathbf{v} with respect to this basis.

Problem 1. Given the standard coordinates (x_1, x_2, \ldots, x_n) , find the nonstandard coordinates $(x'_1, x'_2, \ldots, x'_n)$.

Problem 2. Given the nonstandard coordinates $(x'_1, x'_2, \ldots, x'_n)$, find the standard coordinates (x_1, x_2, \ldots, x_n) .

It turns out that

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ u_{21} & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n1} & u_{n2} & \dots & u_{nn} \end{pmatrix} \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix}.$$

The matrix $U = (u_{ij})$ does not depend on the vector **x**. Columns of U are coordinates of vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ with respect to the standard basis. U is called the **transition matrix** from the basis $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ to the standard basis $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$. This solves Problem 2. To solve Problem 1, we have to use the inverse matrix U^{-1} , which is the transition matrix from $\mathbf{e}_1, \ldots, \mathbf{e}_n$ to $\mathbf{u}_1, \ldots, \mathbf{u}_n$.

Problem. Find coordinates of the vector $\mathbf{x} = (1, 2, 3)$ with respect to the basis $\mathbf{u}_1 = (1, 1, 0)$, $\mathbf{u}_2 = (0, 1, 1)$, $\mathbf{u}_3 = (1, 1, 1)$.

The nonstandard coordinates (x', y', z') of **x** satisfy

$$\begin{pmatrix} x'\\ y'\\ z' \end{pmatrix} = U \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix},$$

where U is the transition matrix from the standard basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ to the basis $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

The transition matrix from $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ to $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is

$$U_0 = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

The transition matrix from $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ to $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ is the inverse matrix: $U = U_0^{-1}$.

The inverse matrix can be computed using row reduction.

$$\begin{aligned} (U_0 \mid I) &= \begin{pmatrix} 1 & 0 & 1 \mid 1 & 0 & 0 \\ 1 & 1 & 1 \mid 0 & 1 & 0 \\ 0 & 1 & 1 \mid 0 & 0 & 1 \end{pmatrix} \\ &\to \begin{pmatrix} 1 & 0 & 1 \mid & 1 & 0 & 0 \\ 0 & 1 & 0 \mid & -1 & 1 & 0 \\ 0 & 1 & 1 \mid & 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 1 \mid & 1 & 0 & 0 \\ 0 & 1 & 0 \mid & -1 & 1 & 0 \\ 0 & 0 & 1 \mid & 1 & -1 & 1 \end{pmatrix} \\ &\to \begin{pmatrix} 1 & 0 & 0 \mid & 0 & 1 & -1 \\ 0 & 1 & 0 \mid & -1 & 1 & 0 \\ 0 & 0 & 1 \mid & 1 & -1 & 1 \end{pmatrix} = (I \mid U_0^{-1}) \end{aligned}$$

Thus

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}.$$

Change of coordinates: general case

Let V be a vector space.

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for V and $g_1 : V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be another basis for V and $g_2: V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.

The composition $g_2 \circ g_1^{-1}$ is a transformation of \mathbb{R}^n . It has the form $\mathbf{x} \mapsto U\mathbf{x}$, where U is an $n \times n$ matrix. U is called the **transition matrix** from $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ to $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$. Columns of U are coordinates of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ with respect to the basis $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$. **Problem.** Find the transition matrix from the basis $p_1(x) = 1$, $p_2(x) = x + 1$, $p_3(x) = (x + 1)^2$ to the basis $q_1(x) = 1$, $q_2(x) = x$, $q_3(x) = x^2$ for the vector space \mathcal{P}_3 .

We have to find coordinates of the polynomials p_1, p_2, p_3 with respect to the basis q_1, q_2, q_3 :

$$p_{1}(x) = 1 = q_{1}(x),$$

$$p_{2}(x) = x + 1 = q_{1}(x) + q_{2}(x),$$

$$p_{3}(x) = (x+1)^{2} = x^{2} + 2x + 1 = q_{1}(x) + 2q_{2}(x) + q_{3}(x).$$
Thus the transition matrix is
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Problem. Find the transition matrix from the basis $\mathbf{v}_1 = (1, 2, 3)$, $\mathbf{v}_2 = (1, 0, 1)$, $\mathbf{v}_3 = (1, 2, 1)$ to the basis $\mathbf{u}_1 = (1, 1, 0)$, $\mathbf{u}_2 = (0, 1, 1)$, $\mathbf{u}_3 = (1, 1, 1)$.

It is convenient to make a two-step transition: first from $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$, and then from $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ to $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

Let U_1 be the transition matrix from $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ and U_2 be the transition matrix from $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ to $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$:

$$U_1 = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix}, \qquad U_2 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Then the transition matrix from $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ is $U_2^{-1}U_1$.

$$U_2^{-1}U_1 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{pmatrix}.$$

Topics for Test 1

Part I: Elementary linear algebra (Leon 1.1–1.4, 2.1–2.2)

• Systems of linear equations: elementary operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for Test 1

Part II: Abstract linear algebra (Leon 3.1–3.4, 3.6)

• Vector spaces (vectors, matrices, polynomials, functional spaces).

• Subspaces. Nullspace, column space, and row space of a matrix.

- Span, spanning set. Linear independence.
- Bases and dimension.
- Rank and nullity of a matrix.

Sample problems for Test 1

Problem 1 (15 pts.) Find the point of intersection of the planes x + 2y - z = 1, x - 3y = -5, and 2x + y + z = 0 in \mathbb{R}^3 .

Problem 2 (25 pts.) Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$
.

(i) Evaluate the determinant of the matrix A.
(ii) Find the inverse matrix A⁻¹.

Problem 3 (20 pts.) Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

(i) The set S_1 of vectors $(x, y, z) \in \mathbb{R}^3$ such that xyz = 0. (ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that x + y + z = 0. (iii) The set S_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 + z^2 = 0$. (iv) The set S_4 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 - z^2 = 0$.

Problem 4 (30 pts.) Let
$$B = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$

(i) Find the rank and the nullity of the matrix B.

(ii) Find a basis for the row space of B, then extend this basis to a basis for \mathbb{R}^4 .

(iii) Find a basis for the nullspace of B.

Bonus Problem 5 (15 pts.) Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Bonus Problem 6 (15 pts.) Let V be a finite-dimensional vector space and V_0 be a proper subspace of V (where proper means that $V_0 \neq V$). Prove that dim $V_0 < \dim V$.

Problem 1. Find the point of intersection of the planes x + 2y - z = 1, x - 3y = -5, and 2x + y + z = 0 in \mathbb{R}^3 .

The intersection point (x, y, z) is a solution of the system

$$\begin{cases} x + 2y - z = 1, \\ x - 3y = -5, \\ 2x + y + z = 0. \end{cases}$$

To solve the system, we convert its augmented matrix into reduced row echelon form using elementary row operations:

$$\begin{pmatrix} 1 & 2 & -1 & | & 1 \\ 1 & -3 & 0 & | & -5 \\ 2 & 1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & | & 1 \\ 0 & -5 & 1 & | & -6 \\ 2 & 1 & 1 & | & 0 \end{pmatrix}$$

Thus the three planes intersect at the point $\left(-1, \frac{4}{3}, \frac{2}{3}\right)$.

Problem 1. Find the point of intersection of the planes x + 2y - z = 1, x - 3y = -5, and 2x + y + z = 0 in \mathbb{R}^3 .

Alternative solution: The intersection point (x, y, z) is a solution of the system

$$\begin{cases} x + 2y - z = 1, \\ x - 3y = -5, \\ 2x + y + z = 0. \end{cases}$$

Add all three equations: $4x = -4 \implies x = -1$. Substitute x = -1 into the 2nd equation: $\implies y = \frac{4}{3}$. Substitute x = -1 and $y = \frac{4}{3}$ into the 3rd equation: $\implies z = \frac{2}{3}$.

It remains to check that x = -1, $y = \frac{4}{3}$, $z = \frac{2}{3}$ is indeed a solution of the system.

Problem 2. Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$
.

(i) Evaluate the determinant of the matrix A.

Subtract the 4th row of A from the 3rd row:

$$\begin{vmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 0 & 0 & -1 & 0 \\ 2 & 0 & 0 & 1 \end{vmatrix}.$$

Expand the determinant by the 3rd row:

$$\begin{vmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 0 & 0 & -1 & 0 \\ 2 & 0 & 0 & 1 \end{vmatrix} = (-1) \begin{vmatrix} 1 & -2 & 1 \\ 2 & 3 & 0 \\ 2 & 0 & 1 \end{vmatrix}$$

٠

Expand the determinant by the 3rd column:

$$(-1)\begin{vmatrix} 1 & -2 & 1 \\ 2 & 3 & 0 \\ 2 & 0 & 1 \end{vmatrix} = (-1)\left(\begin{vmatrix} 2 & 3 \\ 2 & 0 \end{vmatrix} + \begin{vmatrix} 1 & -2 \\ 2 & 3 \end{vmatrix}\right) = -1.$$

Problem 2. Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$
.
(ii) Find the inverse matrix A^{-1} .

First we merge the matrix A with the identity matrix into one 4×8 matrix

$$(A \mid I) = \begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 2 & 3 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & | & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix. Subtract 2 times the 1st row from the 2nd row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & | & -2 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & | & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix}$$

Subtract 2 times the 1st row from the 3rd row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & | & -2 & 1 & 0 & 0 \\ 0 & 4 & -9 & -1 & | & -2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix}$$

Subtract 2 times the 1st row from the 4th row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & | & -2 & 1 & 0 & 0 \\ 0 & 4 & -9 & -1 & | & -2 & 0 & 1 & 0 \\ 0 & 4 & -8 & -1 & | & -2 & 0 & 0 & 1 \end{pmatrix}$$

Subtract 2 times the 4th row from the 2nd row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & | & 2 & 1 & 0 & -2 \\ 0 & 4 & -9 & -1 & | & -2 & 0 & 1 & 0 \\ 0 & 4 & -8 & -1 & | & -2 & 0 & 0 & 1 \end{pmatrix}$$

Subtract the 4th row from the 3rd row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & | & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & | & 0 & 0 & 1 & -1 \\ 0 & 4 & -8 & -1 & | & -2 & 0 & 0 & 1 \end{pmatrix}$$

Add 4 times the 2nd row to the 4th row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & | & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & | & 0 & 0 & 1 & -1 \\ 0 & 0 & 32 & -1 & | & 6 & 4 & 0 & -7 \end{pmatrix}$$

Add 32 times the 3rd row to the 4th row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & | & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & | & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & | & 6 & 4 & 32 & -39 \end{pmatrix}$$

Add 10 times the 3rd row to the 2nd row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & | & 2 & 1 & 10 & -12 \\ 0 & 0 & -1 & 0 & | & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & | & 6 & 4 & 32 & -39 \end{pmatrix}$$

Add the 4th row to the 1st row:

$$\begin{pmatrix} 1 & -2 & 4 & 0 & | & 7 & 4 & 32 & -39 \\ 0 & -1 & 0 & 0 & | & 2 & 1 & 10 & -12 \\ 0 & 0 & -1 & 0 & | & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & | & 6 & 4 & 32 & -39 \end{pmatrix}$$

Add 4 times the 3rd row to the 1st row:

$$\begin{pmatrix} 1 & -2 & 0 & 0 & | & 7 & 4 & 36 & -43 \\ 0 & -1 & 0 & 0 & | & 2 & 1 & 10 & -12 \\ 0 & 0 & -1 & 0 & | & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & | & 6 & 4 & 32 & -39 \end{pmatrix}$$

Subtract 2 times the 2nd row from the 1st row:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\ 0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 6 & 4 & 32 & -39 \end{pmatrix}$$

Multiply the 2nd, the 3rd, and the 4th rows by -1:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\ 0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -6 & -4 & -32 & 39 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & | & 3 & 2 & 16 & -19 \\ 0 & 1 & 0 & 0 & | & -2 & -1 & -10 & 12 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & | & -6 & -4 & -32 & 39 \end{pmatrix} = (I \mid A^{-1})$$

Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of A. Thus

$$\mathcal{A}^{-1} = egin{pmatrix} 1 & -2 & 4 & 1 \ 2 & 3 & 2 & 0 \ 2 & 0 & -1 & 1 \ 2 & 0 & 0 & 1 \end{pmatrix}^{-1} = egin{pmatrix} 3 & 2 & 16 & -19 \ -2 & -1 & -10 & 12 \ 0 & 0 & -1 & 1 \ -6 & -4 & -32 & 39 \end{pmatrix}.$$

Problem 2. Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$
.

(i) Evaluate the determinant of the matrix A.

Alternative solution: We have transformed A into the identity matrix using elementary row operations. These included no row exchanges and three row multiplications, each time by -1.

It follows that det
$$I = (-1)^3 \det A$$
.
 $\implies \det A = -\det I = -1$.

Problem 3. Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

A subset of \mathbb{R}^3 is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.

(i) The set S_1 of vectors $(x, y, z) \in \mathbb{R}^3$ such that xyz = 0.

 $(0,0,0) \in S_1 \implies S_1$ is not empty. $xyz = 0 \implies (rx)(ry)(rz) = r^3xyz = 0.$ That is, $\mathbf{v} = (x, y, z) \in S_1 \implies r\mathbf{v} = (rx, ry, rz) \in S_1.$ Hence S_1 is closed under scalar multiplication. However S_1 is not closed under addition. Counterexample: (1,1,0) + (0,0,1) = (1,1,1). **Problem 3.** Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

A subset of \mathbb{R}^3 is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.

(ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that x + y + z = 0.

 $(0,0,0) \in S_2 \implies S_2$ is not empty.

 $x + y + z = 0 \implies rx + ry + rz = r(x + y + z) = 0.$ Hence S_2 is closed under scalar multiplication.

 $\begin{array}{l} x+y+z=x'+y'+z'=0 \implies \\ (x+x')+(y+y')+(z+z')=(x+y+z)+(x'+y'+z')=0. \\ \text{That is, } \mathbf{v}=(x,y,z), \ \mathbf{v}'=(x,y,z)\in S_2 \\ \implies \mathbf{v}+\mathbf{v}'=(x+x',y+y',z+z')\in S_2. \\ \text{Hence } S_2 \text{ is closed under addition.} \end{array}$

(iii) The set S_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 + z^2 = 0$.

 $y^2+z^2=0 \iff y=z=0.$

 S_3 is a nonempty set closed under addition and scalar multiplication.

(iv) The set S_4 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 - z^2 = 0$.

 S_4 is a nonempty set closed under scalar multiplication. However S_4 is not closed under addition. Counterexample: (0, 1, 1) + (0, 1, -1) = (0, 2, 0).

Problem 4. Let
$$B = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$

(i) Find the rank and the nullity of the matrix *B*.

The rank (= dimension of the row space) and the nullity (= dimension of the nullspace) of a matrix are preserved under elementary row operations. We apply such operations to convert the matrix B into row echelon form.

Interchange the 1st row with the 2nd row:

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$

Add 3 times the 1st row to the 3rd row, then subtract 2 times the 1st row from the 4th row:

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ 0 & 3 & 5 & -3 \\ 2 & -1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ 0 & 3 & 5 & -3 \\ 0 & -3 & -4 & 3 \end{pmatrix}$$

Multiply the 2nd row by -1:

$$ightarrow egin{pmatrix} 1 & 1 & 2 & -1 \ 0 & 1 & -4 & -1 \ 0 & 3 & 5 & -3 \ 0 & -3 & -4 & 3 \end{pmatrix}$$

Add the 4th row to the 3rd row:

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -3 & -4 & 3 \end{pmatrix}$$

Add 3 times the 2nd row to the 4th row:

$$ightarrow egin{pmatrix} 1 & 1 & 2 & -1 \ 0 & 1 & -4 & -1 \ 0 & 0 & 1 & 0 \ 0 & 0 & -16 & 0 \end{pmatrix}$$

Add 16 times the 3rd row to the 4th row:

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Now that the matrix is in row echelon form, its rank equals the number of nonzero rows, which is 3. Since $(\operatorname{rank} \operatorname{of} B) + (\operatorname{nullity} \operatorname{of} B) = (\operatorname{the number of columns of} B) = 4$, it follows that the nullity of B equals 1.

Problem 4. Let
$$B = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$
.

(ii) Find a basis for the row space of B, then extend this basis to a basis for \mathbb{R}^4 .

The row space of a matrix is invariant under elementary row operations. Therefore the row space of the matrix B is the same as the row space of its row echelon form:

$$\begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The nonzero rows of the latter matrix are linearly independent so that they form a basis for its row space:

$$\mathbf{v}_1 = (1, 1, 2, -1), \ \mathbf{v}_2 = (0, 1, -4, -1), \ \mathbf{v}_3 = (0, 0, 1, 0).$$

To extend the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to a basis for \mathbb{R}^4 , we need a vector $\mathbf{v}_4 \in \mathbb{R}^4$ that is not a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

It is known that at least one of the vectors $\mathbf{e}_1 = (1, 0, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0, 0)$, $\mathbf{e}_3 = (0, 0, 1, 0)$, and $\mathbf{e}_4 = (0, 0, 0, 1)$ can be chosen as \mathbf{v}_4 .

In particular, the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{e}_4$ form a basis for \mathbb{R}^4 . This follows from the fact that the 4 × 4 matrix whose rows are these vectors is not singular:

$$egin{array}{cccc} 1 & 1 & 2 & -1 \ 0 & 1 & -4 & -1 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ \end{array} = 1
eq 0.$$

Problem 4. Let
$$B = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$

(iii) Find a basis for the nullspace of B.

The nullspace of B is the solution set of the system of linear homogeneous equations with B as the coefficient matrix. To solve the system, we convert B to reduced row echelon form:

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\implies x_{1} = x_{2} - x_{4} = x_{2} = 0$$

General solution: $(x_1, x_2, x_3, x_4) = (0, t, 0, t) = t(0, 1, 0, 1)$. Thus the vector (0, 1, 0, 1) forms a basis for the nullspace of B. **Bonus Problem 5.** Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Suppose that $af_1(x) + bf_2(x) + cf_3(x) = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0. Let us differentiate the identity 4 times:

$$ax + bxe^{x} + ce^{-x} = 0,$$

$$a + be^{x} + bxe^{x} - ce^{-x} = 0,$$

$$2be^{x} + bxe^{x} + ce^{-x} = 0,$$

$$3be^{x} + bxe^{x} - ce^{-x} = 0,$$

$$4be^{x} + bxe^{x} + ce^{-x} = 0.$$

(the 5th identity)-(the 3rd identity): $2be^{x} = 0 \implies b = 0$. Substitute b = 0 in the 3rd identity: $ce^{-x} = 0 \implies c = 0$. Substitute b = c = 0 in the 2nd identity: a = 0. **Bonus Problem 5.** Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Alternative solution: Suppose that $ax + bxe^x + ce^{-x} = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0.

For any $x \neq 0$ divide both sides of the identity by xe^x :

$$ae^{-x} + b + cx^{-1}e^{-2x} = 0.$$

The left-hand side approaches b as $x \to +\infty$. $\implies b = 0$

Now $ax + ce^{-x} = 0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x:

$$a+cx^{-1}e^{-x}=0.$$

The left-hand side approaches *a* as $x \to +\infty$. $\implies a = 0$

Now $ce^{-x} = 0 \implies c = 0$.

Bonus Problem 6. Let V be a finite-dimensional vector space and V_0 be a proper subspace of V (where proper means that $V_0 \neq V$). Prove that dim $V_0 < \dim V$.

Any vector space has a basis. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be a basis for V_0 .

Vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are linearly independent in V since they are linearly independent in V_0 . Therefore we can extend this collection of vectors to a basis for V by adding some vectors $\mathbf{w}_1, \ldots, \mathbf{w}_m$. As $V_0 \neq V$, we do need to add some vectors, i.e., $m \geq 1$.

Thus dim $V_0 = k$ and dim V = k + m > k.