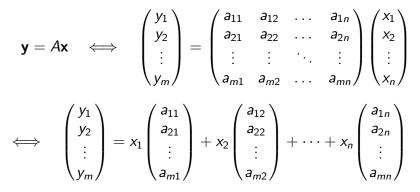
MATH 311 Topics in Applied Mathematics Lecture 14a: Matrix of a linear transformation.

Linear transformation

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \rightarrow V_2$ is **linear** if $\begin{array}{c}
L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}), \\
\hline
L(r\mathbf{x}) = rL(\mathbf{x})
\end{array}$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{R}$.

Basic properties of linear mappings:


•
$$L(r_1\mathbf{v}_1 + \cdots + r_k\mathbf{v}_k) = r_1L(\mathbf{v}_1) + \cdots + r_kL(\mathbf{v}_k)$$

for all $k \ge 1$, $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V_1$, and $r_1, \ldots, r_k \in \mathbb{R}$.

• $L(\mathbf{0}_1) = \mathbf{0}_2$, where $\mathbf{0}_1$ and $\mathbf{0}_2$ are zero vectors in V_1 and V_2 , respectively.

•
$$L(-\mathbf{v}) = -L(\mathbf{v})$$
 for any $\mathbf{v} \in V_1$.

Matrix transformations

Theorem Suppose $L : \mathbb{R}^n \to \mathbb{R}^m$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Columns of A are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), \ldots, L(\mathbf{e}_n)$, where $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ is the standard basis for \mathbb{R}^n .

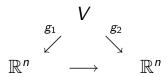
Basis and coordinates

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

 $\mathbf{v} = x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_n\mathbf{v}_n,$

where $x_i \in \mathbb{R}$. The coefficients x_1, x_2, \ldots, x_n are called the **coordinates** of **v** with respect to the ordered basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

The mapping

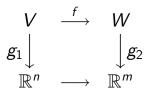

vector $\mathbf{v} \mapsto its$ coordinates (x_1, x_2, \dots, x_n) provides a one-to-one correspondence between Vand \mathbb{R}^n . Besides, this mapping is **linear**.

Change of coordinates

Let V be a vector space.

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for V and $g_1 : V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be another basis for V and $g_2: V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.


The composition $g_2 \circ g_1^{-1}$ is a linear mapping of \mathbb{R}^n to itself. It is represented as $\mathbf{x} \mapsto U\mathbf{x}$, where U is an $n \times n$ matrix. U is called the **transition matrix** from $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ to $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$. Columns of U are coordinates of the vectors

 $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ with respect to the basis $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.

Matrix of a linear transformation

Let V, W be vector spaces and $f: V \to W$ be a linear map. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for V and $g_1: V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m$ be a basis for W and $g_2 : W \to \mathbb{R}^m$ be the coordinate mapping corresponding to this basis.

The composition $g_2 \circ f \circ g_1^{-1}$ is a linear mapping of \mathbb{R}^n to \mathbb{R}^m . It is represented as $\mathbf{x} \mapsto A\mathbf{x}$, where A is an $m \times n$ matrix.

A is called the **matrix of** f with respect to bases $\mathbf{v}_1, \ldots, \mathbf{v}_n$ and $\mathbf{w}_1, \ldots, \mathbf{w}_m$. Columns of A are coordinates of vectors $f(\mathbf{v}_1), \ldots, f(\mathbf{v}_n)$ with respect to the basis $\mathbf{w}_1, \ldots, \mathbf{w}_m$. *Examples.* • $D : \mathcal{P}_3 \to \mathcal{P}_2$, (Dp)(x) = p'(x). Let A_D be the matrix of D with respect to the bases $1, x, x^2$ and 1, x. Columns of A_D are coordinates of polynomials D1, Dx, Dx^2 w.r.t. the basis 1, x.

$$D1 = 0, Dx = 1, Dx^2 = 2x \implies A_D = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

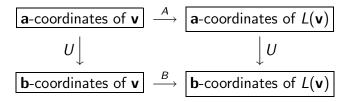
• $L: \mathcal{P}_3 \to \mathcal{P}_3$, (Lp)(x) = p(x+1). Let A_L be the matrix of L w.r.t. the basis $1, x, x^2$. $L1 = 1, Lx = 1 + x, Lx^2 = (x+1)^2 = 1 + 2x + x^2$. $\implies A_L = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ **Problem.** Consider a linear operator $L : \mathbb{R}^2 \to \mathbb{R}^2$,

$$L\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}.$$

Find the matrix of L with respect to the basis $\mathbf{v}_1 = (3, 1)$, $\mathbf{v}_2 = (2, 1)$.

Let *N* be the desired matrix. Columns of *N* are coordinates of the vectors $L(\mathbf{v}_1)$ and $L(\mathbf{v}_2)$ w.r.t. the basis $\mathbf{v}_1, \mathbf{v}_2$.

$$\begin{split} \mathcal{L}(\mathbf{v}_1) &= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \quad \mathcal{L}(\mathbf{v}_2) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}. \\ \text{Clearly,} \quad \mathcal{L}(\mathbf{v}_2) &= \mathbf{v}_1 = 1\mathbf{v}_1 + 0\mathbf{v}_2. \end{split}$$


$$L(\mathbf{v}_1) = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \iff \begin{cases} 3\alpha + 2\beta = 4\\ \alpha + \beta = 1 \end{cases} \iff \begin{cases} \alpha = 2\\ \beta = -1 \end{cases}$$

Thus $N = \begin{pmatrix} 2 & 1\\ -1 & 0 \end{pmatrix}$.

Change of basis for a linear operator

Let $L: V \to V$ be a linear operator on a vector space V.

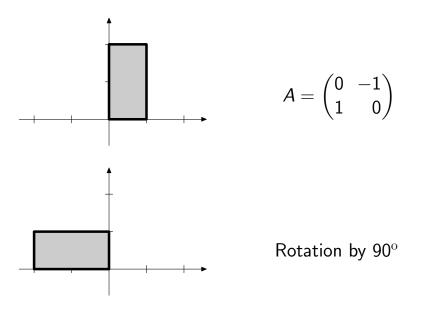
Let A be the matrix of L relative to a basis $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ for V. Let B be the matrix of L relative to another basis $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ for V.

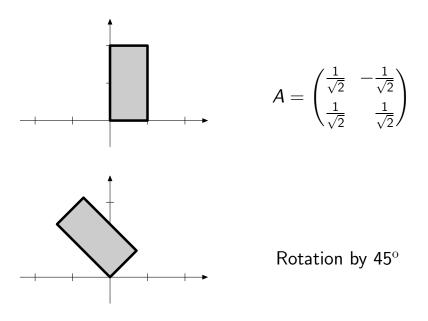
Let U be the transition matrix from the basis $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ to $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$.

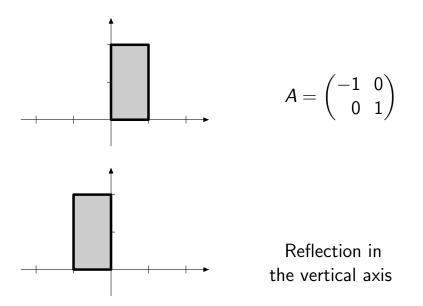
It follows that UA = BU. Then $A = U^{-1}BU$ and $B = UAU^{-1}$. **Problem.** Consider a linear operator $L : \mathbb{R}^2 \to \mathbb{R}^2$, $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$

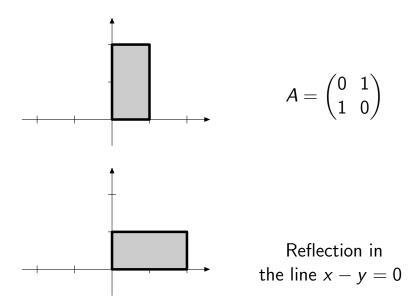
Find the matrix of L with respect to the basis $\mathbf{v}_1 = (3, 1)$, $\mathbf{v}_2 = (2, 1)$.

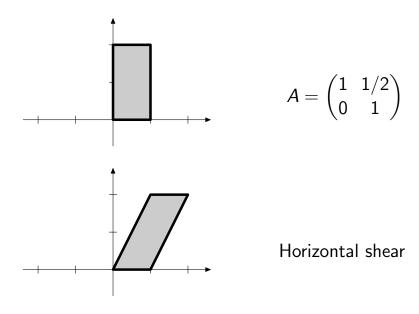
Let *S* be the matrix of *L* with respect to the standard basis, *N* be the matrix of *L* with respect to the basis \mathbf{v}_1 , \mathbf{v}_2 , and *U* be the transition matrix from \mathbf{v}_1 , \mathbf{v}_2 to \mathbf{e}_1 , \mathbf{e}_2 . Then $N = U^{-1}SU$.


$$S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix},$$
$$N = U^{-1}SU = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}.$$


Linear transformations of \mathbb{R}^2


Any linear mapping $f : \mathbb{R}^2 \to \mathbb{R}^2$ is represented as multiplication of a 2-dimensional column vector by a 2×2 matrix: $f(\mathbf{x}) = A\mathbf{x}$ or


$$f\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} a & b\\ c & d \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}.$$


Linear transformations corresponding to particular matrices can have various geometric properties.

