MATH 311
 Topics in Applied Mathematics

Lecture 14b:
 Eigenvalues and eigenvectors.

Eigenvalues and eigenvectors

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an eigenvalue of the matrix A if $A \mathbf{v}=\lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^{n}$. The vector \mathbf{v} is called an eigenvector of A belonging to (or associated with) the eigenvalue λ.

Remarks. - Alternative notation: eigenvalue $=$ characteristic value, eigenvector $=$ characteristic vector.

- The zero vector is never considered an eigenvector.

Example. $\quad A=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$.

$$
\begin{aligned}
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\binom{1}{0} & =\binom{2}{0}=2\binom{1}{0}, \\
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\binom{0}{-2} & =\binom{0}{-6}=3\binom{0}{-2} .
\end{aligned}
$$

Hence $(1,0)$ is an eigenvector of A belonging to the eigenvalue 2 , while $(0,-2)$ is an eigenvector of A belonging to the eigenvalue 3 .

Example. $\quad A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{1}=\binom{1}{1}, \quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{-1}=\binom{-1}{1}$.
Hence $(1,1)$ is an eigenvector of A belonging to the eigenvalue 1 , while $(1,-1)$ is an eigenvector of A belonging to the eigenvalue -1 .
Vectors $\mathbf{v}_{1}=(1,1)$ and $\mathbf{v}_{2}=(1,-1)$ form a basis for \mathbb{R}^{2}. Consider a linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $L(\mathbf{x})=A \mathbf{x}$. The matrix of L with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ is $B=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$.

Let A be an $n \times n$ matrix. Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $L(\mathbf{x})=A \mathbf{x}$. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a nonstandard basis for \mathbb{R}^{n} and B be the matrix of the operator L with respect to this basis.

Theorem The matrix B is diagonal if and only if vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are eigenvectors of A. If this is the case, then the diagonal entries of the matrix B are the corresponding eigenvalues of A.

$$
A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i} \Longleftrightarrow B=\left(\begin{array}{llll}
\lambda_{1} & & & O \\
& \lambda_{2} & & \\
& & \ddots & \\
O & & & \lambda_{n}
\end{array}\right)
$$

Eigenspaces

Let A be an $n \times n$ matrix. Let \mathbf{v} be an eigenvector of A belonging to an eigenvalue λ.
Then $A \mathbf{v}=\lambda \mathbf{v} \Longrightarrow A \mathbf{v}=(\lambda I) \mathbf{v} \Longrightarrow(A-\lambda I) \mathbf{v}=\mathbf{0}$. Hence $\mathbf{v} \in N(A-\lambda I)$, the nullspace of the matrix $A-\lambda I$.

Conversely, if $\mathbf{x} \in N(A-\lambda I)$ then $A \mathbf{x}=\lambda \mathbf{x}$. Thus the eigenvectors of A belonging to the eigenvalue λ are nonzero vectors from $N(A-\lambda I)$.
Definition. If $N(A-\lambda I) \neq\{\mathbf{0}\}$ then it is called the eigenspace of the matrix A corresponding to the eigenvalue λ.

How to find eigenvalues and eigenvectors?

Theorem Given a square matrix A and a scalar λ, the following statements are equivalent:

- λ is an eigenvalue of A,
- $N(A-\lambda I) \neq\{\mathbf{0}\}$,
- the matrix $A-\lambda I$ is singular,
- $\operatorname{det}(A-\lambda I)=0$.

Definition. $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of the matrix A.

Eigenvalues λ of A are roots of the characteristic equation. Associated eigenvectors of A are nonzero solutions of the equation $(A-\lambda I) \mathbf{x}=\mathbf{0}$.

