MATH 311 Topics in Applied Mathematics Lecture 15: Eigenvalues and eigenvectors (continued).

Eigenvalues and eigenvectors of a matrix

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an **eigenvalue** of the matrix A if $\overline{A\mathbf{v} = \lambda \mathbf{v}}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^n$. The vector \mathbf{v} is called an **eigenvector** of A belonging to (or associated with) the eigenvalue λ .

If λ is an eigenvalue of A then the nullspace $N(A - \lambda I)$, which is nontrivial, is called the **eigenspace** of A corresponding to λ . The eigenspace consists of all eigenvectors belonging to the eigenvalue λ plus the zero vector.

How to find eigenvalues and eigenvectors?

Theorem Given a square matrix A and a scalar λ , the following statements are equivalent:

•
$$\lambda$$
 is an eigenvalue of A ,

•
$$N(A - \lambda I) \neq \{\mathbf{0}\},\$$

• the matrix $A - \lambda I$ is singular,

•
$$det(A - \lambda I) = 0.$$

Definition. $det(A - \lambda I) = 0$ is called the **characteristic equation** of the matrix A.

Eigenvalues λ of A are roots of the characteristic equation. Associated eigenvectors of A are nonzero solutions of the equation $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

Example.
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.
 $det(A - \lambda I) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix}$ $= (a - \lambda)(d - \lambda) - bc$ $= \lambda^2 - (a + d)\lambda + (ad - bc).$

Example.
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

$$\det(A - \lambda I) = egin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \ a_{21} & a_{22} - \lambda & a_{23} \ a_{31} & a_{32} & a_{33} - \lambda \ = -\lambda^3 + c_1\lambda^2 - c_2\lambda + c_3, \end{cases}$$

where $c_1 = a_{11} + a_{22} + a_{33}$ (the *trace* of A), $c_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$, $c_3 = \det A$. **Theorem.** Let $A = (a_{ij})$ be an $n \times n$ matrix. Then $det(A - \lambda I)$ is a polynomial of λ of degree n: $det(A - \lambda I) = (-1)^n \lambda^n + c_1 \lambda^{n-1} + \dots + c_{n-1} \lambda + c_n$. Furthermore, $(-1)^{n-1}c_1 = a_{11} + a_{22} + \dots + a_{nn}$ and $c_n = det A$.

Definition. The polynomial $p(\lambda) = det(A - \lambda I)$ is called the **characteristic polynomial** of the matrix A.

Corollary Any $n \times n$ matrix has at most n eigenvalues.

Example.
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
.
Characteristic equation: $\begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = 0.$
 $(2 - \lambda)^2 - 1 = 0 \implies \lambda_1 = 1, \ \lambda_2 = 3.$
 $(A - I)\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $\iff \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff x + y = 0$

The general solution is (-t, t) = t(-1, 1), $t \in \mathbb{R}$. Thus $\mathbf{v}_1 = (-1, 1)$ is an eigenvector associated with the eigenvalue 1. The corresponding eigenspace is the line spanned by \mathbf{v}_1 .

$$(A-3I)\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
$$\iff \begin{pmatrix} 1 & -1\\ 0 & 0 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \iff x - y = \mathbf{0}.$$

The general solution is (t, t) = t(1, 1), $t \in \mathbb{R}$. Thus $\mathbf{v}_2 = (1, 1)$ is an eigenvector associated with the eigenvalue 3. The corresponding eigenspace is the line spanned by \mathbf{v}_2 .

Summary.
$$A = \begin{pmatrix} 2 & 1 \ 1 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 1 and 3.
- The eigenspace of A associated with the eigenvalue 1 is the line t(-1, 1).

• The eigenspace of A associated with the eigenvalue 3 is the line t(1, 1).

• Eigenvectors $\mathbf{v}_1 = (-1, 1)$ and $\mathbf{v}_2 = (1, 1)$ of the matrix A form a basis for \mathbb{R}^2 .

• Geometrically, the mapping $\mathbf{x} \mapsto A\mathbf{x}$ is a stretch by a factor of 3 away from the line x + y = 0 in the orthogonal direction.

Example.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Characteristic equation:

$$egin{array}{ccc|c} 1-\lambda & 1 & -1 \ 1 & 1-\lambda & 1 \ 0 & 0 & 2-\lambda \end{array} = 0.$$

Expand the determinant by the 3rd row:

$$(2-\lambda)\begin{vmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix} = 0.$$

$$((1-\lambda)^2-1)(2-\lambda)=0 \iff -\lambda(2-\lambda)^2=0$$

 $\implies \lambda_1=0, \ \lambda_2=2.$

$$A\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Convert the matrix to reduced row echelon form:

$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$A\mathbf{x} = \mathbf{0} \iff \begin{cases} x + y = 0, \\ z = 0. \end{cases}$$

The general solution is (-t, t, 0) = t(-1, 1, 0), $t \in \mathbb{R}$. Thus $\mathbf{v}_1 = (-1, 1, 0)$ is an eigenvector associated with the eigenvalue 0. The corresponding eigenspace is the line spanned by \mathbf{v}_1 .

$$(A-2I)\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff x - y + z = 0.$$

The general solution is x = t - s, y = t, z = s, where $t, s \in \mathbb{R}$. Equivalently,

$$\mathbf{x} = (t - s, t, s) = t(1, 1, 0) + s(-1, 0, 1).$$

Thus $\mathbf{v}_2 = (1, 1, 0)$ and $\mathbf{v}_3 = (-1, 0, 1)$ are eigenvectors associated with the eigenvalue 2. The corresponding eigenspace is the plane spanned by \mathbf{v}_2 and \mathbf{v}_3 .

Summary.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

• The matrix A has two eigenvalues: 0 and 2.

• The eigenvalue 0 is *simple:* the corresponding eigenspace is a line.

• The eigenvalue 2 is of *multiplicity* 2: the corresponding eigenspace is a plane.

Eigenvectors v₁ = (-1, 1, 0), v₂ = (1, 1, 0), and v₃ = (-1, 0, 1) of the matrix A form a basis for ℝ³.
Geometrically, the map x → Ax is the projection on the plane Span(v₂, v₃) along the lines parallel to v₁ with the subsequent scaling by a factor of 2.

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L: V \rightarrow V$ be a linear operator. A number λ is called an **eigenvalue** of the operator L if $L(\mathbf{v}) = \lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an **eigenvector** of L associated with the eigenvalue λ . (If V is a functional space then eigenvectors are also called **eigenfunctions**.)

If $V = \mathbb{R}^n$ then the linear operator L is given by $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ matrix. In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.

Eigenspaces

Let $L: V \rightarrow V$ be a linear operator.

For any $\lambda \in \mathbb{R}$, let V_{λ} denotes the set of all solutions of the equation $L(\mathbf{x}) = \lambda \mathbf{x}$.

Then V_{λ} is a *subspace* of V since V_{λ} is the *kernel* of a linear operator given by $\mathbf{x} \mapsto L(\mathbf{x}) - \lambda \mathbf{x}$.

 V_{λ} minus the zero vector is the set of all eigenvectors of L associated with the eigenvalue λ . In particular, $\lambda \in \mathbb{R}$ is an eigenvalue of L if and only if $V_{\lambda} \neq \{\mathbf{0}\}$.

If $V_{\lambda} \neq \{\mathbf{0}\}$ then it is called the **eigenspace** of *L* corresponding to the eigenvalue λ .

Example.
$$V=C^\infty(\mathbb{R}),\ D:V o V,\ Df=f'.$$

A function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator D belonging to an eigenvalue λ if $f'(x) = \lambda f(x)$ for all $x \in \mathbb{R}$.

It follows that $f(x) = ce^{\lambda x}$, where c is a nonzero constant.

Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of D. The corresponding eigenspace is spanned by $e^{\lambda x}$.

Example. $V = C^{\infty}(\mathbb{R}), L: V \to V, Lf = f''.$ $Lf = \lambda f \iff f''(x) - \lambda f(x) = 0$ for all $x \in \mathbb{R}$. It follows that each $\lambda \in \mathbb{R}$ is an eigenvalue of L and the corresponding eigenspace V_{λ} is two-dimensional. If $\lambda > 0$ then $V_{\lambda} = \text{Span}(\exp(\sqrt{\lambda}x), \exp(-\sqrt{\lambda}x))$. If $\lambda < 0$ then $V_{\lambda} = \operatorname{Span}(\sin(\sqrt{-\lambda}x), \cos(\sqrt{-\lambda}x))$. If $\lambda = 0$ then $V_{\lambda} = \text{Span}(1, x)$.

Let V be a vector space and $L: V \rightarrow V$ be a linear operator.

Proposition 1 If $\mathbf{v} \in V$ is an eigenvector of the operator *L* then the associated eigenvalue is unique.

Proof: Suppose that $L(\mathbf{v}) = \lambda_1 \mathbf{v}$ and $L(\mathbf{v}) = \lambda_2 \mathbf{v}$. Then $\lambda_1 \mathbf{v} = \lambda_2 \mathbf{v} \implies (\lambda_1 - \lambda_2) \mathbf{v} = \mathbf{0} \implies \lambda_1 - \lambda_2 = \mathbf{0} \implies \lambda_1 = \lambda_2$.

Proposition 2 Suppose \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of *L* associated with different eigenvalues λ_1 and λ_2 . Then \mathbf{v}_1 and \mathbf{v}_2 are linearly independent.

Proof: For any scalar $t \neq 0$ the vector $t\mathbf{v}_1$ is also an eigenvector of L associated with the eigenvalue λ_1 . Since $\lambda_2 \neq \lambda_1$, it follows that $\mathbf{v}_2 \neq t\mathbf{v}_1$. That is, \mathbf{v}_2 is not a scalar multiple of \mathbf{v}_1 . Similarly, \mathbf{v}_1 is not a scalar multiple of \mathbf{v}_2 .

Let $L: V \rightarrow V$ be a linear operator.

Proposition 3 If \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are eigenvectors of L associated with distinct eigenvalues λ_1 , λ_2 , and λ_3 , then they are linearly independent.

Proof: Suppose that $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + t_3\mathbf{v}_3 = \mathbf{0}$ for some $t_1, t_2, t_3 \in \mathbb{R}$. Then

$$L(t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + t_3\mathbf{v}_3) = \mathbf{0},$$

$$t_1L(\mathbf{v}_1) + t_2L(\mathbf{v}_2) + t_3L(\mathbf{v}_3) = \mathbf{0},$$

$$t_1\lambda_1\mathbf{v}_1 + t_2\lambda_2\mathbf{v}_2 + t_3\lambda_3\mathbf{v}_3 = \mathbf{0}.$$

It follows that

$$t_1\lambda_1\mathbf{v}_1 + t_2\lambda_2\mathbf{v}_2 + t_3\lambda_3\mathbf{v}_3 - \lambda_3(t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + t_3\mathbf{v}_3) = \mathbf{0}$$

$$\implies t_1(\lambda_1 - \lambda_3)\mathbf{v}_1 + t_2(\lambda_2 - \lambda_3)\mathbf{v}_2 = \mathbf{0}.$$

By the above, \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. Hence $t_1(\lambda_1 - \lambda_3) = t_2(\lambda_2 - \lambda_3) = 0$ $\implies t_1 = t_2 = 0 \implies t_3 = 0.$ **Theorem** If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Corollary Let A be an $n \times n$ matrix such that the characteristic equation $det(A - \lambda I) = 0$ has n distinct real roots. Then \mathbb{R}^n has a basis consisting of eigenvectors of A.

Proof: Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be distinct real roots of the characteristic equation. Any λ_i is an eigenvalue of A, hence there is an associated eigenvector \mathbf{v}_i . By the theorem, vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly independent. Therefore they form a basis for \mathbb{R}^n .

Theorem If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct real numbers, then the functions $e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_k x}$ are linearly independent.

Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ given by Df = f'. Then $e^{\lambda_1 x}, \ldots, e^{\lambda_k x}$ are eigenfunctions of Dassociated with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$.

Characteristic polynomial of an operator

Let *L* be a linear operator on a finite-dimensional vector space *V*. Let $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ be a basis for *V*. Let *A* be the matrix of *L* with respect to this basis.

Definition. The characteristic polynomial of the matrix A is called the **characteristic polynomial** of the operator L.

Then eigenvalues of L are roots of its characteristic polynomial.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let *B* be the matrix of *L* with respect to a different basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$. Then $A = UBU^{-1}$, where *U* is the transition matrix from the basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ to $\mathbf{u}_1, \dots, \mathbf{u}_n$. We obtain $\det(A - \lambda I) = \det(UBU^{-1} - \lambda I)$

 $= \det \left(UBU^{-1} - U(\lambda I)U^{-1} \right) = \det \left(U(B - \lambda I)U^{-1} \right)$ $= \det(U) \det(B - \lambda I) \det(U^{-1}) = \det(B - \lambda I).$