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Lecture 16:

Diagonalization.

Euclidean structure in R
n.



Diagonalization

Let L be a linear operator on a finite-dimensional vector space
V . Then the following conditions are equivalent:

• the matrix of L with respect to some basis is diagonal;
• there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Let A be an n×n matrix. Then the following conditions are
equivalent:

• A is the matrix of a diagonalizable operator;
• A is similar to a diagonal matrix, i.e., it is represented as
A = UBU−1, where the matrix B is diagonal;
• there exists a basis for R

n formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.
Otherwise A is called defective.



Example. A =

(

2 1
1 2

)

.

• The matrix A has two eigenvalues: 1 and 3.
• The eigenspace of A associated with the

eigenvalue 1 is the line spanned by v1 = (−1, 1).
• The eigenspace of A associated with the

eigenvalue 3 is the line spanned by v2 = (1, 1).
• Eigenvectors v1 and v2 form a basis for R

2.

Thus the matrix A is diagonalizable. Namely,
A = UBU−1, where

B =

(

1 0
0 3

)

, U =

(

−1 1
1 1

)

.



Example. A =





1 1 −1
1 1 1
0 0 2



.

• The matrix A has two eigenvalues: 0 and 2.
• The eigenspace corresponding to 0 is spanned by
v1 = (−1, 1, 0).
• The eigenspace corresponding to 2 is spanned by
v2 = (1, 1, 0) and v3 = (−1, 0, 1).
• Eigenvectors v1, v2, v3 form a basis for R

3.

Thus the matrix A is diagonalizable. Namely,
A = UBU−1, where

B =





0 0 0
0 2 0
0 0 2



, U =





−1 1 −1
1 1 0
0 0 1



.



Problem. Diagonalize the matrix A =

(

4 3
0 1

)

.

We need to find a diagonal matrix B and an
invertible matrix U such that A = UBU−1.

Suppose that v1 = (x1, y1), v2 = (x2, y2) is a basis
for R

2 formed by eigenvectors of A, i.e., Avi = λivi

for some λi ∈ R. Then we can take

B =

(

λ1 0
0 λ2

)

, U =

(

x1 x2

y1 y2

)

.

Note that U is the transition matrix from the basis
v1, v2 to the standard basis.



Problem. Diagonalize the matrix A =

(

4 3
0 1

)

.

Characteristic equation of A:

∣

∣

∣

∣

4 − λ 3
0 1 − λ

∣

∣

∣

∣

= 0.

(4 − λ)(1 − λ) = 0 =⇒ λ1 = 4, λ2 = 1.

Associated eigenvectors: v1 = (1, 0), v2 = (−1, 1).

Thus A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.



Problem. Let A =

(

4 3
0 1

)

. Find A5.

We know that A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.

Then A5 = UBU−1UBU−1UBU−1UBU−1UBU−1

= UB5U−1 =

(

1 −1
0 1

) (

1024 0
0 1

) (

1 1
0 1

)

=

(

1024 −1
0 1

) (

1 1
0 1

)

=

(

1024 1023
0 1

)

.



Problem. Let A =

(

4 3
0 1

)

. Find a matrix C

such that C 2 = A.

We know that A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.

Suppose that D2 = B for some matrix D. Let C = UDU−1.
Then C 2 = UDU−1UDU−1 = UD2U−1 = UBU−1 = A.

We can take D =

(√
4 0

0
√

1

)

=

(

2 0
0 1

)

.

Then C =

(

1 −1
0 1

) (

2 0
0 1

) (

1 1
0 1

)

=

(

2 1
0 1

)

.



System of linear ODEs

Problem. Solve a system

{

dx
dt

= 4x + 3y ,

dy

dt
= y .

The system can be rewritten in vector form:

dv

dt
= Av, where A =

(

4 3
0 1

)

, v =

(

x

y

)

.

We know that A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.

Let w =

(

w1

w2

)

be coordinates of the vector v relative to the

basis v1 = (1, 0), v2 = (−1, 1) of eigenvectors of A. Then
v = Uw =⇒ w = U−1v.



It follows that

dw

dt
=

d

dt
(U−1v) = U−1dv

dt
= U−1Av = U−1AUw.

Thus
dw

dt
= Bw ⇐⇒

{

dw1

dt
= 4w1,

dw2

dt
= w2.

The general solution: w1(t) = c1e
4t , w2(t) = c2e

t ,
where c1, c2 are arbitrary constants. Then

(

x(t)
y(t)

)

= Uw(t) =

(

1 −1
0 1

)(

c1e
4t

c2e
t

)

=

(

c1e
4t−c2e

t

c2e
t

)

.



There are two obstructions to diagonalization.
They are illustrated by the following examples.

Example 1. A =

(

1 1
0 1

)

.

det(A − λI ) = (λ − 1)2. Hence λ = 1 is the only
eigenvalue. The associated eigenspace is the line
t(1, 0).

Example 2. A =

(

0 −1
1 0

)

.

det(A − λI ) = λ2 + 1.
=⇒ no real eigenvalues or eigenvectors

(However there are complex eigenvalues/eigenvectors.)



Vectors: geometric approach

A

B

A′

B ′

• A vector is represented by a directed segment.
• Directed segment is drawn as an arrow.
• Different arrows represent the same vector if

they are of the same length and direction.



Vectors: geometric approach

A

B

A′

B ′

v

v

−→
AB denotes the vector represented by the arrow
with tip at B and tail at A.
−→
AA is called the zero vector and denoted 0.



Vectors: geometric approach

A

B

A′

B ′

−v

v

If v =
−→
AB then

−→
BA is called the negative vector of

v and denoted −v.



Vector addition

Given vectors a and b, their sum a + b is defined by

the rule
−→
AB +

−→
BC =

−→
AC .

That is, choose points A, B , C so that
−→
AB = a and−→

BC = b. Then a + b =
−→
AC .

A

B
C

A′

B ′

C ′

a

b

a + b

a

b

a + b



The difference of the two vectors is defined as
a − b = a + (−b).

a − b

b

a



Scalar multiplication

Let v be a vector and r ∈ R. By definition, rv is a
vector whose magnitude is |r | times the magnitude
of v. The direction of rv coincides with that of v if
r > 0. If r < 0 then the directions of rv and v are
opposite.

v

3v

−2v



Beyond linearity: length of a vector

The length (or the magnitude) of a vector
−→
AB is

the length of the representing segment AB . The
length of a vector v is denoted |v| or ‖v‖.

Properties of vector length:

|x| ≥ 0, |x| = 0 only if x = 0 (positivity)

|rx| = |r | |x| (homogeneity)

|x + y| ≤ |x| + |y| (triangle inequality)

x

y

x + y



Beyond linearity: angle between vectors

Given nonzero vectors x and y, let A, B , and C be

points such that
−→
AB = x and

−→
AC = y. Then ∠BAC

is called the angle between x and y.

The vectors x and y are called orthogonal (denoted
x ⊥ y) if the angle between them equals 90o.

A B

C

θ

y

x



x x + y

y

Pythagorean Theorem:

x ⊥ y =⇒ |x + y|2 = |x|2 + |y|2

3-dimensional Pythagorean Theorem:

If vectors x, y, z are pairwise orthogonal then
|x + y + z|2 = |x|2 + |y|2 + |z|2



A B

C

θ

y

x

x − y

Law of cosines:

|x − y|2 = |x|2 + |y|2 − 2|x| |y| cos θ



Beyond linearity: dot product

The dot product of vectors x and y is

x · y = |x| |y| cos θ,

where θ is the angle between x and y.

The dot product is also called the scalar product.
Alternative notation: (x, y) or 〈x, y〉.
The vectors x and y are orthogonal if and only if
x · y = 0.

Relations between lengths and dot products:

• |x| =
√

x · x
• |x · y| ≤ |x| |y|
• |x − y|2 = |x|2 + |y|2 − 2 x·y



Vectors: algebraic approach

An n-dimensional coordinate vector is an element of
R

n, i.e., an ordered n-tuple (x1, x2, . . . , xn) of real
numbers.

Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be
vectors, and r ∈ R be a scalar. Then, by definition,

a + b = (a1 + b1, a2 + b2, . . . , an + bn),

ra = (ra1, ra2, . . . , ran),

0 = (0, 0, . . . , 0),

−b = (−b1,−b2, . . . ,−bn),

a − b = a + (−b) = (a1 − b1, a2 − b2, . . . , an − bn).



Cartesian coordinates: geometric meets algebraic

(−3, 2)

(2, 1)

(−3, 2)

(2, 1)

Once we specify an origin O, each point A is

associated a position vector
−→
OA. Conversely, every

vector has a unique representative with tail at O.

Cartesian coordinates allow us to identify a line, a
plane, and space with R, R

2, and R
3, respectively.



Length and distance

Definition. The length of a vector
v = (v1, v2, . . . , vn) ∈ R

n is

‖v‖ =
√

v 2
1 + v 2

2 + · · · + v 2
n .

The distance between vectors/points x and y is
‖y − x‖.

Properties of length:

‖x‖ ≥ 0, ‖x‖ = 0 only if x = 0 (positivity)

‖rx‖ = |r | ‖x‖ (homogeneity)

‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)



Scalar product

Definition. The scalar product of vectors
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is

x · y = x1y1 + x2y2 + · · · + xnyn =
n

∑

k=1

xkyk .

Properties of scalar product:

x · x ≥ 0, x · x = 0 only if x = 0 (positivity)

x · y = y · x (symmetry)

(x + y) · z = x · z + y · z (distributive law)

(rx) · y = r(x · y) (homogeneity)



Relations between lengths and scalar products:

‖x‖ =
√

x · x
|x · y| ≤ ‖x‖ ‖y‖ (Cauchy-Schwarz inequality)

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2 x·y

By the Cauchy-Schwarz inequality, for any nonzero
vectors x, y ∈ R

n we have

cos θ =
x · y

‖x‖ ‖y‖ for some 0 ≤ θ ≤ π.

θ is called the angle between the vectors x and y.
The vectors x and y are said to be orthogonal

(denoted x ⊥ y) if x · y = 0 (i.e., if θ = 90o).



Problem. Find the angle θ between vectors
x = (2,−1) and y = (3, 1).

x · y = 5, ‖x‖ =
√

5, ‖y‖ =
√

10.

cos θ =
x · y

‖x‖ ‖y‖ =
5√

5
√

10
=

1√
2

=⇒ θ = 45o

Problem. Find the angle φ between vectors
v = (−2, 1, 3) and w = (4, 5, 1).

v · w = 0 =⇒ v ⊥ w =⇒ φ = 90o


