MATH 311
Topics in Applied Mathematics

Lecture 16:
 Diagonalization.
 Euclidean structure in \mathbb{R}^{n}.

Diagonalization

Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of L with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these conditions.

Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as $A=U B U^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{R}^{n} formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions. Otherwise A is called defective.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 1 and 3 .
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by $\mathbf{v}_{1}=(-1,1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by $\mathbf{v}_{2}=(1,1)$.
- Eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} form a basis for \mathbb{R}^{2}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right), \quad U=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right) .
$$

Example. $A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 0 and 2 .
- The eigenspace corresponding to 0 is spanned by
$\mathbf{v}_{1}=(-1,1,0)$.
- The eigenspace corresponding to 2 is spanned by
$\mathbf{v}_{2}=(1,1,0)$ and $\mathbf{v}_{3}=(-1,0,1)$.
- Eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ form a basis for \mathbb{R}^{3}.

Thus the matrix A is diagonalizable. Namely,
$A=U B U^{-1}$, where

$$
B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad U=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Problem. Diagonalize the matrix $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$.
We need to find a diagonal matrix B and an invertible matrix U such that $A=U B U^{-1}$.
Suppose that $\mathbf{v}_{1}=\left(x_{1}, y_{1}\right), \mathbf{v}_{2}=\left(x_{2}, y_{2}\right)$ is a basis for \mathbb{R}^{2} formed by eigenvectors of A, i.e., $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ for some $\lambda_{i} \in \mathbb{R}$. Then we can take

$$
B=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right), \quad U=\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right) .
$$

Note that U is the transition matrix from the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ to the standard basis.

Problem. Diagonalize the matrix $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$.
Characteristic equation of $A:\left|\begin{array}{cc}4-\lambda & 3 \\ 0 & 1-\lambda\end{array}\right|=0$.
$(4-\lambda)(1-\lambda)=0 \quad \Longrightarrow \quad \lambda_{1}=4, \lambda_{2}=1$.
Associated eigenvectors: $\mathbf{v}_{1}=(1,0), \mathbf{v}_{2}=(-1,1)$.
Thus $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find A^{5}.
We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Then $A^{5}=U B U^{-1} U B U^{-1} U B U^{-1} U B U^{-1} U B U^{-1}$

$$
\begin{aligned}
& =U B^{5} U^{-1}=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1024 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1024 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1024 & 1023 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find a matrix C such that $C^{2}=A$.

We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Suppose that $D^{2}=B$ for some matrix D. Let $C=U D U^{-1}$. Then $C^{2}=U D U^{-1} U D U^{-1}=U D^{2} U^{-1}=U B U^{-1}=A$.
We can take $D=\left(\begin{array}{cc}\sqrt{4} & 0 \\ 0 & \sqrt{1}\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
Then $C=\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$.

System of linear ODEs

Problem. Solve a system $\left\{\begin{array}{l}\frac{d x}{d t}=4 x+3 y, \\ \frac{d y}{d t}=y .\end{array}\right.$
The system can be rewritten in vector form:

$$
\frac{d \mathbf{v}}{d t}=A \mathbf{v}, \quad \text { where } A=\left(\begin{array}{ll}
4 & 3 \\
0 & 1
\end{array}\right), \quad \mathbf{v}=\binom{x}{y}
$$

We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
$$

Let $\mathbf{w}=\binom{w_{1}}{w_{2}}$ be coordinates of the vector \mathbf{v} relative to the basis $\mathbf{v}_{1}=(1,0), \mathbf{v}_{2}=(-1,1)$ of eigenvectors of A. Then $\mathbf{v}=U \mathbf{w} \Longrightarrow \mathbf{w}=U^{-1} \mathbf{v}$.

It follows that
$\frac{d \mathbf{w}}{d t}=\frac{d}{d t}\left(U^{-1} \mathbf{v}\right)=U^{-1} \frac{d \mathbf{v}}{d t}=U^{-1} A \mathbf{v}=U^{-1} A U \mathbf{w}$.
Thus $\quad \frac{d \mathbf{w}}{d t}=B \mathbf{w} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}\frac{d w_{1}}{d t}=4 w_{1}, \\ \frac{d w_{2}}{d t}=w_{2} .\end{array}\right.$
The general solution: $w_{1}(t)=c_{1} e^{4 t}, w_{2}(t)=c_{2} e^{t}$, where c_{1}, c_{2} are arbitrary constants. Then

$$
\binom{x(t)}{y(t)}=U \mathbf{w}(t)=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\binom{c_{1} e^{4 t}}{c_{2} e^{t}}=\binom{c_{1} e^{4 t}-c_{2} e^{t}}{c_{2} e^{t}} .
$$

There are two obstructions to diagonalization.
They are illustrated by the following examples.
Example 1. $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
$\operatorname{det}(A-\lambda I)=(\lambda-1)^{2}$. Hence $\lambda=1$ is the only eigenvalue. The associated eigenspace is the line $t(1,0)$.
Example 2. $\quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$.
$\operatorname{det}(A-\lambda I)=\lambda^{2}+1$.
\Longrightarrow no real eigenvalues or eigenvectors
(However there are complex eigenvalues/eigenvectors.)

Vectors: geometric approach

- A vector is represented by a directed segment.
- Directed segment is drawn as an arrow.
- Different arrows represent the same vector if they are of the same length and direction.

Vectors: geometric approach

$\overrightarrow{A B}$ denotes the vector represented by the arrow with tip at B and tail at A.
$\overrightarrow{A A}$ is called the zero vector and denoted 0 .

Vectors: geometric approach

If $\mathbf{v}=\overrightarrow{A B}$ then $\overrightarrow{B A}$ is called the negative vector of \mathbf{v} and denoted $-\mathbf{v}$.

Vector addition

Given vectors \mathbf{a} and \mathbf{b}, their sum $\mathbf{a}+\mathbf{b}$ is defined by the rule $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$.
That is, choose points A, B, C so that $\overrightarrow{A B}=\mathbf{a}$ and $\overrightarrow{B C}=\mathbf{b}$. Then $\mathbf{a}+\mathbf{b}=\overrightarrow{A C}$.

The difference of the two vectors is defined as $\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})$.

Scalar multiplication

Let \mathbf{v} be a vector and $r \in \mathbb{R}$. By definition, $r \mathbf{v}$ is a vector whose magnitude is $|r|$ times the magnitude of \mathbf{v}. The direction of $r \mathbf{v}$ coincides with that of \mathbf{v} if $r>0$. If $r<0$ then the directions of $r \mathbf{v}$ and \mathbf{v} are opposite.

$-\quad-2 v$

Beyond linearity: length of a vector

The length (or the magnitude) of a vector $\overrightarrow{A B}$ is the length of the representing segment $A B$. The length of a vector \mathbf{v} is denoted $|\mathbf{v}|$ or $\|\mathbf{v}\|$.

Properties of vector length:

$$
\begin{array}{lr}
|\mathbf{x}| \geq 0, \quad|\mathbf{x}|=0 \text { only if } \mathbf{x}=\mathbf{0} & \text { (positivity) } \\
|r \mathbf{x}|=|r||\mathbf{x}| & \text { (homogeneity) } \\
|\mathbf{x}+\mathbf{y}| \leq|\mathbf{x}|+|\mathbf{y}| & \text { (triangle inequality) }
\end{array}
$$

Beyond linearity: angle between vectors

Given nonzero vectors \mathbf{x} and \mathbf{y}, let A, B, and C be points such that $\overrightarrow{A B}=\mathbf{x}$ and $\overrightarrow{A C}=\mathbf{y}$. Then $\angle B A C$ is called the angle between \mathbf{x} and \mathbf{y}.
The vectors \mathbf{x} and \mathbf{y} are called orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if the angle between them equals 90°.

Pythagorean Theorem:

$$
\mathbf{x} \perp \mathbf{y} \Longrightarrow|\mathbf{x}+\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}
$$

3-dimensional Pythagorean Theorem:
If vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are pairwise orthogonal then

$$
|\mathbf{x}+\mathbf{y}+\mathbf{z}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}+|\mathbf{z}|^{2}
$$

Law of cosines:
$|\mathbf{x}-\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2|\mathbf{x}||\mathbf{y}| \cos \theta$

Beyond linearity: dot product

The dot product of vectors \mathbf{x} and \mathbf{y} is

$$
\mathbf{x} \cdot \mathbf{y}=|\mathbf{x}||\mathbf{y}| \cos \theta
$$

where θ is the angle between \mathbf{x} and \mathbf{y}.
The dot product is also called the scalar product. Alternative notation: (\mathbf{x}, \mathbf{y}) or $\langle\mathbf{x}, \mathbf{y}\rangle$.
The vectors \mathbf{x} and \mathbf{y} are orthogonal if and only if $\mathbf{x} \cdot \mathbf{y}=0$.
Relations between lengths and dot products:

- $|\mathbf{x}|=\sqrt{\mathbf{x \cdot x}}$
- $|x \cdot y| \leq|x||y|$
- $|\mathbf{x}-\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2 \mathbf{x} \cdot \mathbf{y}$

Vectors: algebraic approach

An n-dimensional coordinate vector is an element of \mathbb{R}^{n}, i.e., an ordered n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of real numbers.

Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be vectors, and $r \in \mathbb{R}$ be a scalar. Then, by definition,
$\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$,
$r \mathbf{a}=\left(r a_{1}, r a_{2}, \ldots, r a_{n}\right)$,
$\mathbf{0}=(0,0, \ldots, 0)$,
$-\mathbf{b}=\left(-b_{1},-b_{2}, \ldots,-b_{n}\right)$,
$\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})=\left(a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{n}-b_{n}\right)$.

Cartesian coordinates: geometric meets algebraic

Once we specify an origin O, each point A is associated a position vector $\overrightarrow{O A}$. Conversely, every vector has a unique representative with tail at O.
Cartesian coordinates allow us to identify a line, a plane, and space with $\mathbb{R}, \mathbb{R}^{2}$, and \mathbb{R}^{3}, respectively.

Length and distance

Definition. The length of a vector

$$
\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n} \text { is }
$$

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

The distance between vectors/points \mathbf{x} and \mathbf{y} is

$$
\|\mathbf{y}-\mathbf{x}\| .
$$

Properties of length:

$$
\begin{array}{lr}
\|\mathbf{x}\| \geq 0, \quad\|\mathbf{x}\|=0 \text { only if } \mathbf{x}=\mathbf{0} & \text { (positivity) } \\
\|r \mathbf{x}\|=|r|\|\mathbf{x}\| & \text { (homogeneity) } \\
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| & \text { (triangle inequality) }
\end{array}
$$

Scalar product

Definition. The scalar product of vectors
$\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{k=1}^{n} x_{k} y_{k}
$$

Properties of scalar product:
$\mathbf{x} \cdot \mathbf{x} \geq 0, \mathbf{x} \cdot \mathbf{x}=0$ only if $\mathbf{x}=\mathbf{0}$
(positivity)
$x \cdot y=y \cdot x$
(symmetry)
$(x+y) \cdot z=x \cdot z+y \cdot z$
$(r \mathbf{x}) \cdot \mathbf{y}=r(\mathbf{x} \cdot \mathbf{y})$
(distributive law)
(homogeneity)

Relations between lengths and scalar products:

$$
\begin{aligned}
& \|\mathbf{x}\|=\sqrt{\mathbf{x} \cdot \mathbf{x}} \\
& |\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \text { (Cauchy-Schwarz inequality) } \\
& \|\mathbf{x}-\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2 \mathbf{x} \cdot \mathbf{y}
\end{aligned}
$$

By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have

$$
\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|} \text { for some } 0 \leq \theta \leq \pi
$$

θ is called the angle between the vectors \mathbf{x} and \mathbf{y}.
The vectors \mathbf{x} and \mathbf{y} are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y}=0$ (i.e., if $\theta=90^{\circ}$).

Problem. Find the angle θ between vectors $\mathbf{x}=(2,-1)$ and $\mathbf{y}=(3,1)$.
$\mathbf{x} \cdot \mathbf{y}=5, \quad\|\mathbf{x}\|=\sqrt{5},\|\mathbf{y}\|=\sqrt{10}$.
$\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}=\frac{5}{\sqrt{5} \sqrt{10}}=\frac{1}{\sqrt{2}} \Longrightarrow \theta=45^{\circ}$

Problem. Find the angle ϕ between vectors
$\mathbf{v}=(-2,1,3)$ and $\mathbf{w}=(4,5,1)$.
$\mathbf{v} \cdot \mathbf{w}=0 \Longrightarrow \mathbf{v} \perp \mathbf{w} \Longrightarrow \phi=90^{\circ}$

