MATH 311

Topics in Applied Mathematics

Lecture 20: The Gram-Schmidt process (continued).

Review for Test 2.

Orthogonal sets

Let V be a vector space with an inner product.

Definition. Nonzero vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an **orthogonal set** if they are orthogonal to each other: $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ for $i \neq j$.

If, in addition, all vectors are of unit norm, $\|\mathbf{v}_i\| = 1$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is called an **orthonormal set**.

Theorem Any orthogonal set is linearly independent.

Orthogonal projection

Theorem Let V be a finite-dimensional inner product space and V_0 be a subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.

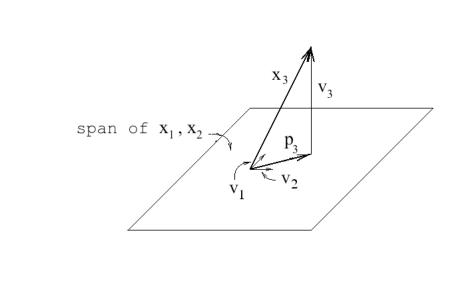
The component \mathbf{p} is the **orthogonal projection** of the vector \mathbf{x} onto the subspace V_0 . The distance from \mathbf{x} to the subspace V_0 is $\|\mathbf{o}\|$.

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V_0 then

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let


$$\mathbf{v}_1 = \mathbf{x}_1$$
,

$$\mathbf{v}_2 = \mathbf{x}_2 - rac{\langle \mathbf{x}_2, \mathbf{v}_1
angle}{\langle \mathbf{v}_1, \mathbf{v}_1
angle} \mathbf{v}_1$$
,

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2,$$

$$\mathbf{v}_n = \mathbf{x}_n - \frac{\langle \mathbf{x}_n, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \dots - \frac{\langle \mathbf{x}_n, \mathbf{v}_{n-1} \rangle}{\langle \mathbf{v}_{n-1}, \mathbf{v}_{n-1} \rangle} \mathbf{v}_{n-1}.$$

Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.

Orthogonalization / Normalization

An alternative form of the Gram-Schmidt process combines orthogonalization with normalization.

Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for an inner product space V. Let

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{x}_1, \quad \mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}, \\ \mathbf{v}_2 &= \mathbf{x}_2 - \langle \mathbf{x}_2, \mathbf{w}_1 \rangle \mathbf{w}_1, \quad \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}, \\ \mathbf{v}_3 &= \mathbf{x}_3 - \langle \mathbf{x}_3, \mathbf{w}_1 \rangle \mathbf{w}_1 - \langle \mathbf{x}_3, \mathbf{w}_2 \rangle \mathbf{w}_2, \quad \mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|}, \end{aligned}$$

$$\mathbf{v}_n = \mathbf{x}_n - \langle \mathbf{x}_n, \mathbf{w}_1 \rangle \mathbf{w}_1 - \dots - \langle \mathbf{x}_n, \mathbf{w}_{n-1} \rangle \mathbf{w}_{n-1},$$
 $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}.$

Then $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ is an orthonormal basis for V.

Problem. Find the distance from the point $\mathbf{y} = (0,0,0,1)$ to the subspace $\Pi \subset \mathbb{R}^4$ spanned by vectors $\mathbf{x}_1 = (1,-1,1,-1)$, $\mathbf{x}_2 = (1,1,3,-1)$, and

 $\mathbf{x}_3 = (-3, 7, 1, 3).$

Let us apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. The desired distance will be $|\mathbf{v}_4|$.

$$\mathbf{x}_{1} = (1, -1, 1, -1), \ \mathbf{x}_{2} = (1, 1, 3, -1),$$

$$\mathbf{x}_{3} = (-3, 7, 1, 3), \ \mathbf{y} = (0, 0, 0, 1).$$

$$\mathbf{v}_{1} = \mathbf{x}_{1} = (1, -1, 1, -1),$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\langle \mathbf{x}_{2}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} = (1, 1, 3, -1) - \frac{4}{4}(1, -1, 1, -1)$$

$$= (0, 2, 2, 0),$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{1}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{1}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2}$$

$$= (-3, 7, 1, 3) - \frac{-12}{4} (1, -1, 1, -1) - \frac{16}{8} (0, 2, 2, 0)$$

$$= (0, 0, 0, 0).$$

The Gram-Schmidt process can be used to check linear independence of vectors!

The vector \mathbf{x}_3 is a linear combination of \mathbf{x}_1 and \mathbf{x}_2 .

 Π is a plane, not a 3-dimensional subspace.

We should orthogonalize vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}$.

$$\begin{aligned} \mathbf{v}_4 &= \mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 \\ &= (0, 0, 0, 1) - \frac{-1}{4} (1, -1, 1, -1) - \frac{0}{8} (0, 2, 2, 0) \\ &= (1/4, -1/4, 1/4, 3/4). \end{aligned}$$

$$|\mathbf{v}_4| = \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} \left| (1, -1, 1, 3) \right| = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}.$$

Problem. Find the distance from the point $\mathbf{z} = (0,0,1,0)$ to the plane Π that passes through the point $\mathbf{x}_0 = (1,0,0,0)$ and is parallel to the vectors $\mathbf{v}_1 = (1,-1,1,-1)$ and $\mathbf{v}_2 = (0,2,2,0)$.

The plane Π is not a subspace of \mathbb{R}^4 as it does not pass through the origin. Let $\Pi_0 = \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2)$. Then $\Pi = \Pi_0 + \mathbf{x}_0$.

Hence the distance from the point \mathbf{z} to the plane Π is the same as the distance from the point $\mathbf{z} - \mathbf{x}_0$ to the plane Π_0 .

We shall apply the Gram-Schmidt process to vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{z} - \mathbf{x}_0$. This will yield an orthogonal system $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$. The desired distance will be $|\mathbf{w}_3|$.

$$\overline{\mathbf{w}_1 = \mathbf{v}_1 = (1, -1, 1, -1)}$$
,

 $\mathbf{v}_1 = (1, -1, 1, -1), \ \mathbf{v}_2 = (0, 2, 2, 0), \ \mathbf{z} - \mathbf{x}_0 = (-1, 0, 1, 0).$

 $\mathbf{w}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 = \mathbf{v}_2 = (0, 2, 2, 0)$ as $\mathbf{v}_2 \perp \mathbf{v}_1$.

$$\mathbf{w}_{3} = (\mathbf{z} - \mathbf{x}_{0}) - \frac{\langle \mathbf{z} - \mathbf{x}_{0}, \mathbf{w}_{1} \rangle}{\langle \mathbf{w}_{1}, \mathbf{w}_{1} \rangle} \mathbf{w}_{1} - \frac{\langle \mathbf{z} - \mathbf{x}_{0}, \mathbf{w}_{2} \rangle}{\langle \mathbf{w}_{2}, \mathbf{w}_{2} \rangle} \mathbf{w}_{2}$$

$$= (-1, 0, 1, 0) - \frac{0}{4} (1, -1, 1, -1) - \frac{2}{8} (0, 2, 2, 0)$$

$$= (-1, -1/2, 1/2, 0).$$

= (-1, -1/2, 1/2, 0). $|\mathbf{w}_3| = \left| \left(-1, -\frac{1}{2}, \frac{1}{2}, 0 \right) \right| = \frac{1}{2} \left| (-2, -1, 1, 0) \right| = \frac{\sqrt{6}}{2} = \sqrt{\frac{3}{2}}.$

Topics for Test 2

Coordinates and linear transformations (Leon 3.5, 4.1–4.3)

- Coordinates relative to a basis
- Change of basis, transition matrix
- Matrix transformations
- Matrix of a linear mapping

Eigenvalues and eigenvectors (Leon 6.1, 6.3)

- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Diagonalization

Orthogonality (Leon 5.1–5.6)

- Inner products and norms
- Orthogonal complement
- Least squares problems
- The Gram-Schmidt orthogonalization process

Sample problems for Test 2

Problem 1 (15 pts.) Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the vector space of 2×2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \to \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$L\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Find the matrix of the operator L with respect to the basis

$$E_1=\begin{pmatrix}1&0\\0&0\end{pmatrix},\ E_2=\begin{pmatrix}0&1\\0&0\end{pmatrix},\ E_3=\begin{pmatrix}0&0\\1&0\end{pmatrix},\ E_4=\begin{pmatrix}0&0\\0&1\end{pmatrix}.$$

Problem 2 (30 pts.) Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

- (i) Find all eigenvalues of the matrix A.
- (ii) For each eigenvalue of A, find an associated eigenvector.
- (iii) Is the matrix A diagonalizable? Explain.
- (iv) Find all eigenvalues of the matrix A^2 .

Problem 3 (20 pts.) Find a linear polynomial which is the best least squares fit to the following data:

Problem 4 (25 pts.) Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1=(1,1,1,1)$ and $\mathbf{x}_2=(1,0,3,0)$.

(i) Find an orthonormal basis for V. (ii) Find an orthonormal basis for the orthogonal complement V^{\perp}

Bonus Problem 5 (15 pts.) Let $L: V \to W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that

 $\dim \operatorname{Range}(L) + \dim \ker(L) = \dim V.$

Problem 1. Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the vector space of 2×2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \to \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$L\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Find the matrix of the operator L with respect to the basis

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Let M_l denote the desired matrix.

By definition, M_L is a 4×4 matrix whose columns are coordinates of the matrices $L(E_1), L(E_2), L(E_3), L(E_4)$ with respect to the basis E_1, E_2, E_3, E_4 .

$$L(E_2) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 0 & 0 \end{pmatrix} = 3E_1 + 4E_2 + 0E_3 + 0E_4,$$

$$L(E_3) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix} = 0E_1 + 0E_2 + 1E_3 + 2E_4,$$

 $L(E_4) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 3 & 4 \end{pmatrix} = 0E_1 + 0E_2 + 3E_3 + 4E_4.$

 $L(E_1) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = 1E_1 + 2E_2 + 0E_3 + 0E_4,$

It follows that $\begin{pmatrix} 1 & 3 & 0 \end{pmatrix}$

$$M_L = egin{pmatrix} 1 & 3 & 0 & 0 \ 2 & 4 & 0 & 0 \ 0 & 0 & 1 & 3 \ 0 & 0 & 2 & 4 \end{pmatrix}.$$

Thus the relation

is equivalent to the relation

 $\begin{pmatrix} x_1 & y_1 \\ z_1 & w_1 \end{pmatrix} = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

 $\begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ \dots \end{pmatrix} = \begin{pmatrix} 1 & 3 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ \dots \end{pmatrix}.$

Problem 2. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation $\det(A - \lambda I) = 0$. We obtain that

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 & 0 \\ 1 & 1 - \lambda & 1 \\ 0 & 2 & 1 - \lambda \end{vmatrix}$$

$$= (1 - \lambda)^3 - 2(1 - \lambda) - 2(1 - \lambda) = (1 - \lambda)((1 - \lambda)^2 - 4)$$

$$=(1-\lambda)\big((1-\lambda)-2\big)\big((1-\lambda)+2\big)=-(\lambda-1)(\lambda+1)(\lambda-3).$$

Hence the matrix A has three eigenvalues: -1, 1, and 3.

Problem 2. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector $\mathbf{v} = (x, y, z)$ of the matrix A associated with an eigenvalue λ is a nonzero solution of the vector equation

$$(A-\lambda I)\mathbf{v} = \mathbf{0} \iff \begin{pmatrix} 1-\lambda & 2 & 0 \\ 1 & 1-\lambda & 1 \\ 0 & 2 & 1-\lambda \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

To solve the equation, we convert the matrix $A - \lambda I$ to reduced row echelon form.

First consider the case $\lambda = -1$. The row reduction yields

$$A+I = \begin{pmatrix} 2 & 2 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence

$$(A+I)\mathbf{v} = \mathbf{0} \iff \begin{cases} x-z=0, \\ y+z=0. \end{cases}$$

The general solution is x=t, y=-t, z=t, where $t\in\mathbb{R}$. In particular, $\mathbf{v}_1=(1,-1,1)$ is an eigenvector of A associated with the eigenvalue -1.

Secondly, consider the case $\lambda=1$. The row reduction yields

$$A-I = \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence

$$(A-I)\mathbf{v} = \mathbf{0} \quad \Longleftrightarrow \quad \begin{cases} x+z=0, \\ y=0. \end{cases}$$

The general solution is x=-t, y=0, z=t, where $t\in\mathbb{R}$. In particular, $\mathbf{v}_2=(-1,0,1)$ is an eigenvector of A associated with the eigenvalue 1.

Finally, consider the case $\lambda = 3$. The row reduction yields

$$A-3I = \begin{pmatrix} -2 & 2 & 0 \\ 1 & -2 & 1 \\ 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & 2 & -2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence

$$(A-3I)\mathbf{v} = \mathbf{0} \quad \Longleftrightarrow \quad \begin{cases} x-z=0, \\ y-z=0. \end{cases}$$

The general solution is x = t, y = t, z = t, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_3 = (1, 1, 1)$ is an eigenvector of A associated with the eigenvalue 3.

Problem 2. Let $A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$.

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for \mathbb{R}^3 formed by its eigenvectors.

Namely, the vectors $\mathbf{v}_1=(1,-1,1)$, $\mathbf{v}_2=(-1,0,1)$, and $\mathbf{v}_3=(1,1,1)$ are eigenvectors of the matrix A belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$ is a basis for \mathbb{R}^3 .

Alternatively, the existence of a basis for \mathbb{R}^3 consisting of eigenvectors of A already follows from the fact that the matrix A has three distinct eigenvalues.

Problem 2. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(iv) Find all eigenvalues of the matrix A^2 .

We have that $A = UBU^{-1}$, where

$$B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

The columns of U are eigenvectors of A belonging to the eigenvalues -1, 1, and 3, respectively.

Then $A^2 = UBU^{-1}UBU^{-1} = UB^2U^{-1}$, that is, the matrix A^2 is similar to the diagonal matrix $B^2 = \text{diag}(1, 1, 9)$.

Similar matrices have the same characteristic polynomial, hence they have the same eigenvalues. Thus the eigenvalues of A^2 are the same as the eigenvalues of B^2 : 1 and 9.

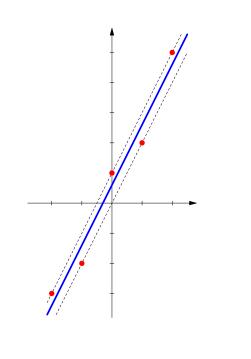
Problem 3. Find a linear polynomial which is the best least squares fit to the following data:

We are looking for a function $f(x) = c_1 + c_2 x$, where c_1, c_2 are unknown coefficients. The data of the problem give rise to an overdetermined system of linear equations in variables c_1 and c_2 :

$$\begin{cases} c_1 - 2c_2 = -3, \\ c_1 - c_2 = -2, \\ c_1 = 1, \\ c_1 + c_2 = 2, \\ c_1 + 2c_2 = 5. \end{cases}$$

This system is inconsistent.

We can represent the system as a matrix equation $A\mathbf{c} = \mathbf{y}$, where


$$A = \begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} -3 \\ -2 \\ 1 \\ 2 \\ 5 \end{pmatrix}.$$

The least squares solution \mathbf{c} of the above system is a solution of the normal system $A^T A \mathbf{c} = A^T \mathbf{v}$:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} -3 \\ -2 \\ 1 \\ 2 \\ 5 \end{pmatrix}$$

$$\iff \begin{pmatrix} 5 & 0 \\ 0 & 10 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 20 \end{pmatrix} \iff \begin{cases} c_1 = 3/5 \\ c_2 = 2 \end{cases}$$

Thus the function $f(x) = \frac{3}{5} + 2x$ is the best least squares fit to the above data among linear polynomials.

Problem 4. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1 = (1, 1, 1, 1)$ and $\mathbf{x}_2 = (1, 0, 3, 0)$.

(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to vectors $\mathbf{x}_1, \mathbf{x}_2$ and obtain an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2$ for the subspace V:

$$\mathbf{v}_1 = \mathbf{x}_1 = (1, 1, 1, 1),$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = (1, 0, 3, 0) - \frac{4}{4} (1, 1, 1, 1) = (0, -1, 2, -1).$$

Then we normalize vectors \mathbf{v}_1 , \mathbf{v}_2 to obtain an orthonormal basis \mathbf{w}_1 , \mathbf{w}_2 for V:

$$\|\mathbf{v}_1\| = 2 \implies \mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \frac{1}{2}(1, 1, 1, 1)$$

$$\|\mathbf{v}_2\| = \sqrt{6} \implies \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \frac{1}{\sqrt{6}}(0, -1, 2, -1)$$

Problem 4. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1 = (1, 1, 1, 1)$ and $\mathbf{x}_2 = (1, 0, 3, 0)$.

(ii) Find an orthonormal basis for the orthogonal complement V^{\perp} .

Since the subspace V is spanned by vectors (1,1,1,1) and (1,0,3,0), it is the row space of the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 0 \end{pmatrix}.$$

Then the orthogonal complement V^{\perp} is the nullspace of A. To find the nullspace, we convert the matrix A to reduced row echelon form:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix}.$$

Hence a vector $(x_1,x_2,x_3,x_4)\in\mathbb{R}^4$ belongs to V^\perp if and only if

$$\begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} x_1 + 3x_3 = 0 \\ x_2 - 2x_3 + x_4 = 0 \end{cases} \iff \begin{cases} x_1 = -3x_3 \\ x_2 = 2x_3 - x_4 \end{cases}$$

The general solution of the system is $(x_1, x_2, x_3, x_4) = (-3t, 2t - s, t, s) = t(-3, 2, 1, 0) + s(0, -1, 0, 1)$, where $t, s \in \mathbb{R}$.

It follows that V^{\perp} is spanned by vectors $\mathbf{x}_3 = (0, -1, 0, 1)$ and $\mathbf{x}_4 = (-3, 2, 1, 0)$.

The vectors $\mathbf{x}_3 = (0, -1, 0, 1)$ and $\mathbf{x}_4 = (-3, 2, 1, 0)$ form a basis for the subspace V^{\perp} .

It remains to orthogonalize and normalize this basis:

$$\mathbf{v}_3 = \mathbf{x}_3 = (0, -1, 0, 1),$$

$$\mathbf{v}_4 = \mathbf{x}_4 - \frac{\mathbf{x}_4 \cdot \mathbf{v}_3}{\mathbf{v}_3 \cdot \mathbf{v}_3} \mathbf{v}_3 = (-3, 2, 1, 0) - \frac{-2}{2} (0, -1, 0, 1)$$

$$= (-3, 1, 1, 1),$$

$$\begin{split} \|\mathbf{v}_3\| &= \sqrt{2} \implies \mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \frac{1}{\sqrt{2}}(0, -1, 0, 1), \\ \|\mathbf{v}_4\| &= \sqrt{12} = 2\sqrt{3} \implies \mathbf{w}_4 = \frac{\mathbf{v}_4}{\|\mathbf{v}_4\|} = \frac{1}{2\sqrt{3}}(-3, 1, 1, 1). \end{split}$$

Thus the vectors $\mathbf{w}_3 = \frac{1}{\sqrt{2}}(0, -1, 0, 1)$ and $\mathbf{w}_4 = \frac{1}{2\sqrt{3}}(-3, 1, 1, 1)$ form an orthonormal basis for V^{\perp} .

Problem 4. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1 = (1,1,1,1)$ and $\mathbf{x}_2 = (1,0,3,0)$.

(i) Find an orthonormal basis for V. (ii) Find an orthonormal basis for the orthogonal complement V^{\perp}

Alternative solution: First we extend the set $\mathbf{x}_1, \mathbf{x}_2$ to a basis $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ for \mathbb{R}^4 . Then we orthogonalize and normalize the latter. This yields an orthonormal basis $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4$ for \mathbb{R}^4 .

By construction, $\mathbf{w}_1, \mathbf{w}_2$ is an orthonormal basis for V. It follows that $\mathbf{w}_3, \mathbf{w}_4$ is an orthonormal basis for V^{\perp} .

The set $\mathbf{x}_1 = (1, 1, 1, 1)$, $\mathbf{x}_2 = (1, 0, 3, 0)$ can be extended to a basis for \mathbb{R}^4 by adding two vectors from the standard basis.

For example, we can add vectors $\mathbf{e}_3=(0,0,1,0)$ and $\mathbf{e}_4=(0,0,0,1)$. To show that $\mathbf{x}_1,\mathbf{x}_2,\mathbf{e}_3,\mathbf{e}_4$ is indeed a basis for \mathbb{R}^4 , we check that the matrix whose rows are these vectors is nonsingular:

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = - \begin{vmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -1 \neq 0.$$

To orthogonalize the basis $\mathbf{x}_1, \mathbf{x}_2, \mathbf{e}_3, \mathbf{e}_4$, we apply the Gram-Schmidt process:

$$\mathbf{v}_1 = \mathbf{x}_1 = (1, 1, 1, 1),$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = (1, 0, 3, 0) - \frac{4}{4}(1, 1, 1, 1) = (0, -1, 2, -1),$$

$$\begin{split} \textbf{v}_3 &= \textbf{e}_3 - \frac{\textbf{e}_3 \cdot \textbf{v}_1}{\textbf{v}_1 \cdot \textbf{v}_1} \textbf{v}_1 - \frac{\textbf{e}_3 \cdot \textbf{v}_2}{\textbf{v}_2 \cdot \textbf{v}_2} \textbf{v}_2 = (0, 0, 1, 0) - \frac{1}{4} (1, 1, 1, 1) - \\ &- \frac{2}{6} (0, -1, 2, -1) = \left(-\frac{1}{4}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12} \right) = \frac{1}{12} (-3, 1, 1, 1), \end{split}$$

$$\begin{aligned} \mathbf{v}_4 &= \mathbf{e}_4 - \frac{\mathbf{e}_4 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{e}_4 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 - \frac{\mathbf{e}_4 \cdot \mathbf{v}_3}{\mathbf{v}_3 \cdot \mathbf{v}_3} \mathbf{v}_3 = (0, 0, 0, 1) - \\ &- \frac{1}{4} (1, 1, 1, 1) - \frac{-1}{6} (0, -1, 2, -1) - \frac{1/12}{1/12} \cdot \frac{1}{12} (-3, 1, 1, 1) = \\ &= (0, -\frac{1}{2}, 0, \frac{1}{2}) = \frac{1}{2} (0, -1, 0, 1). \end{aligned}$$

It remains to normalize vectors $\mathbf{v}_1 = (1, 1, 1, 1)$, $\mathbf{v}_2 = (0, -1, 2, -1)$, $\mathbf{v}_3 = \frac{1}{12}(-3, 1, 1, 1)$, $\mathbf{v}_4 = \frac{1}{2}(0, -1, 0, 1)$:

 $\|\mathbf{v}_2\| = \sqrt{6} \implies \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \frac{1}{\sqrt{6}}(0, -1, 2, -1)$

 $\|\mathbf{v}_1\| = 2 \implies \mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \frac{1}{2}(1, 1, 1, 1)$

orthonormal basis for V^{\perp} .

$$\mathbf{v}_2 = (0, -1, 2, -1), \ \mathbf{v}_3 = \frac{1}{12}(-3, 1, 1, 1), \ \mathbf{v}_4 = \frac{1}{2}(0, -1)$$

 $\|\mathbf{v}_3\| = \frac{1}{\sqrt{12}} = \frac{1}{2\sqrt{3}} \implies \mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_2\|} = \frac{1}{2\sqrt{3}}(-3, 1, 1, 1)$

$$\|\mathbf{v}_4\|=rac{1}{\sqrt{2}}\implies \mathbf{w}_4=rac{\mathbf{v}_4}{\|\mathbf{v}_4\|}=rac{1}{\sqrt{2}}(0,-1,0,1)$$
 Thus $\mathbf{w}_1,\mathbf{w}_2$ is an orthonormal basis for V while $\mathbf{w}_3,\mathbf{w}_4$ is an

Bonus Problem 5. Let $L: V \to W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that $\dim \operatorname{Range}(L) + \dim \ker(L) = \dim V$.

The kernel ker(L) is a subspace of V. It is finite-dimensional since the vector space V is.

Take a basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ for the subspace $\ker(L)$, then extend it to a basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ for the entire space V.

Claim Vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \dots, L(\mathbf{u}_m)$ form a basis for the range of L.

Assuming the claim is proved, we obtain $\operatorname{dim} \operatorname{Range}(L) = m$, $\operatorname{dim} \ker(L) = k$, $\operatorname{dim} V = k + m$.

Claim Vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \dots, L(\mathbf{u}_m)$ form a basis for the range of L.

Proof (spanning): Any vector $\mathbf{w} \in \operatorname{Range}(L)$ is represented as $\mathbf{w} = L(\mathbf{v})$, where $\mathbf{v} \in V$. Then

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k + \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \dots + \beta_m \mathbf{u}_m$$

for some $\alpha_i, \beta_i \in \mathbb{R}$. It follows that

$$\mathbf{w} = L(\mathbf{v}) = \alpha_1 L(\mathbf{v}_1) + \dots + \alpha_k L(\mathbf{v}_k) + \beta_1 L(\mathbf{u}_1) + \dots + \beta_m L(\mathbf{u}_m)$$
$$= \beta_1 L(\mathbf{u}_1) + \dots + \beta_m L(\mathbf{u}_m).$$

Note that $L(\mathbf{v}_i) = \mathbf{0}$ since $\mathbf{v}_i \in \ker(L)$.

Thus Range(L) is spanned by the vectors $L(\mathbf{u}_1), \ldots, L(\mathbf{u}_m)$.

Claim Vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \dots, L(\mathbf{u}_m)$ form a basis for the range of L.

 ${\it Proof (linear\ independence):}\ \ {\it Suppose\ that}$

$$t_1L(\mathbf{u}_1)+t_2L(\mathbf{u}_2)+\cdots+t_mL(\mathbf{u}_m)=\mathbf{0}$$

for some $t_i \in \mathbb{R}$. Let $\mathbf{u} = t_1 \mathbf{u}_1 + t_2 \mathbf{u}_2 + \cdots + t_m \mathbf{u}_m$. Since

$$L(\mathbf{u}) = t_1 L(\mathbf{u}_1) + t_2 L(\mathbf{u}_2) + \cdots + t_m L(\mathbf{u}_m) = \mathbf{0},$$

the vector **u** belongs to the kernel of L. Therefore $\mathbf{u} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \cdots + s_k \mathbf{v}_k$ for some $s_i \in \mathbb{R}$. It follows that

$$t_1\mathbf{u}_1+t_2\mathbf{u}_2+\cdots+t_m\mathbf{u}_m-s_1\mathbf{v}_1-s_2\mathbf{v}_2-\cdots-s_k\mathbf{v}_k=\mathbf{u}-\mathbf{u}=\mathbf{0}.$$

Linear independence of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{u}_1, \dots, \mathbf{u}_m$ implies that $t_1 = \dots = t_m = 0$ (as well as $s_1 = \dots = s_k = 0$). Thus the vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \dots, L(\mathbf{u}_m)$ are linearly independent.