MATH 311
Topics in Applied Mathematics

Lecture 21:
 Boundary value problems. Separation of variables.

Differential equations

A differential equation is an equation involving an unknown function and certain of its derivatives.

An ordinary differential equation (ODE) is an equation involving an unknown function of one variable and certain of its derivatives.

A partial differential equation (PDE) is an equation involving an unknown function of two or more variables and certain of its partial derivatives.

Examples

$$
\begin{aligned}
& x^{2}+2 x+1=0 \\
& f(2 x)=2(f(x))^{2}-1 \\
& f^{\prime}(t)+t^{2} f(t)=4 \\
& \frac{\partial u}{\partial x}+3 \frac{\partial^{2} u}{\partial x \partial y}-u \frac{\partial u}{\partial y} \\
& \frac{\partial u}{\partial x}-5 \frac{\partial u}{\partial y}=u \\
& u+u^{2}=\frac{\partial^{2} u}{\partial x \partial y}(0,0)
\end{aligned}
$$

(algebraic equation)
(functional equation)
(ODE)
(not an equation)
(PDE)
(functional-differential equation)
heat equation:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

wave equation: $\quad \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
Laplace's equation: $\quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$

In the first two equations, $u=u(x, t)$. In the latter one, $u=u(x, y)$.
heat equation:

$$
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

Laplace's equation: $\quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$

In the first two equations, $u=u(x, y, t)$. In the latter one, $u=u(x, y, z)$.

Initial and boundary conditions for ODEs

$y^{\prime}(t)=y(t), 0 \leq t \leq L$.
General solution: $y(t)=C_{1} e^{t}$, where $C_{1}=$ const.
To determine a unique solution, we need one initial condition.

For example, $y(0)=1$. Then $y(t)=e^{t}$ is the unique solution.
$y^{\prime \prime}(t)=-y(t), 0 \leq t \leq L$.
General solution: $y(t)=C_{1} \cos t+C_{2} \sin t$, where C_{1}, C_{2} are constant.

To determine a unique solution, we need two initial conditions. For example, $y(0)=1, y^{\prime}(0)=0$. Then $y(t)=\cos t$ is the unique solution.

Alternatively, we may impose boundary conditions.
For example, $y(0)=0, y(L)=1$. In the case $L=\pi / 2, y(t)=\sin t$ is the unique solution.

PDE

$$
\frac{\partial^{2} u}{\partial w \partial z}=0, \quad u=u(w, z)
$$

Domain: $a_{1} \leq w \leq a_{2}, b_{1} \leq z \leq b_{2}$.
(we allow intervals $\left[a_{1}, a_{2}\right]$ and $\left[b_{1}, b_{2}\right.$] to be infinite or semi-infinite)

$$
\begin{aligned}
\frac{\partial}{\partial w}\left(\frac{\partial u}{\partial z}\right) & =0, \quad \frac{\partial u}{\partial z}(w, z)=\gamma(z) \\
u(w, z) & =\int_{z_{0}}^{z} \gamma(\xi) d \xi+C(w)
\end{aligned}
$$

$$
u(w, z)=B(z)+C(w) \quad \text { (general solution) }
$$

Wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Change of independent variables:

$$
w=x+c t, \quad z=x-c t
$$

How does the equation look in new coordinates?

$$
\begin{gathered}
\frac{\partial}{\partial t}=\frac{\partial w}{\partial t} \frac{\partial}{\partial w}+\frac{\partial z}{\partial t} \frac{\partial}{\partial z}=c \frac{\partial}{\partial w}-c \frac{\partial}{\partial z} \\
\frac{\partial}{\partial x}=\frac{\partial w}{\partial x} \frac{\partial}{\partial w}+\frac{\partial z}{\partial x} \frac{\partial}{\partial z}=\frac{\partial}{\partial w}+\frac{\partial}{\partial z}
\end{gathered}
$$

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =c^{2}\left(\frac{\partial}{\partial w}-\frac{\partial}{\partial z}\right)\left(\frac{\partial}{\partial w}-\frac{\partial}{\partial z}\right) u \\
& =c^{2}\left(\frac{\partial^{2} u}{\partial w^{2}}-2 \frac{\partial^{2} u}{\partial w \partial z}+\frac{\partial^{2} u}{\partial z^{2}}\right) \\
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial^{2} u}{\partial w^{2}}+2 \frac{\partial^{2} u}{\partial w \partial z}+\frac{\partial^{2} u}{\partial z^{2}} \\
\frac{\partial^{2} u}{\partial t^{2}} & -c^{2} \frac{\partial^{2} u}{\partial x^{2}}=-4 c^{2} \frac{\partial^{2} u}{\partial w \partial z}
\end{aligned}
$$

Wave equation in new coordinates: $\frac{\partial^{2} u}{\partial w \partial z}=0$.
General solution: $u(x, t)=B(x-c t)+C(x+c t)$
(d'Alembert, 1747)

Boundary conditions for PDEs

Heat equation: $\quad \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L$, $0 \leq t \leq T$.

Initial condition: $u(x, 0)=f(x)$, where $f:[0, L] \rightarrow \mathbb{R}$.

Boundary conditions: $u(0, t)=u_{1}(t)$, $u(L, t)=u_{2}(t)$, where $u_{1}, u_{2}:[0, T] \rightarrow \mathbb{R}$.
Boundary conditions of the first kind: prescribed temperature.

Another boundary conditions: $\frac{\partial u}{\partial x}(0, t)=\phi_{1}(t)$, $\frac{\partial u}{\partial x}(L, t)=\phi_{2}(t)$, where $\phi_{1}, \phi_{2}:[0, T] \rightarrow \mathbb{R}$.
Boundary conditions of the second kind: prescribed heat flux.
A particular case: $\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t)=0$
(insulated boundary).

Robin conditions:

$-\frac{\partial u}{\partial x}(0, t)=-h \cdot\left(u(0, t)-u_{1}(t)\right)$,
$-\frac{\partial u}{\partial x}(L, t)=h \cdot\left(u(L, t)-u_{2}(t)\right)$,
where $h=$ const >0 and $u_{1}, u_{2}:[0, T] \rightarrow \mathbb{R}$.
Boundary conditions of the third kind: Newton's law of cooling.

Also, we may consider mixed boundary conditions, for example, $u(0, t)=u_{1}(t), \frac{\partial u}{\partial x}(L, t)=\phi_{2}(t)$.

Wave equation

$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L, 0 \leq t \leq T$.
Two initial conditions: $u(x, 0)=f(x)$,
$\frac{\partial u}{\partial t}(x, 0)=g(x)$, where $f, g:[0, L] \rightarrow \mathbb{R}$.
Some boundary conditions: $u(0, t)=u(L, t)=0$.
Dirichlet conditions: fixed ends.
Another boundary conditions:
$\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t)=0$.
Neumann conditions: free ends.

Linear equations

An equation is called linear if it can be written in the form

$$
L(u)=f
$$

where $L: V_{1} \rightarrow V_{2}$ is a linear map, $f \in V_{2}$ is given, and $u \in V_{1}$ is the unknown. If $f=0$ then the linear equation is called homogeneous.

Theorem The general solution of a linear equation $L(u)=f$ is

$$
u=u_{1}+u_{0}
$$

where u_{1} is a particular solution and u_{0} is the general solution of the homogeneous equation $L(u)=0$.

Linear differential operators

- ordinary differential operator:
$L=g_{0} \frac{d^{2}}{d x^{2}}+g_{1} \frac{d}{d x}+g_{2} \quad\left(g_{0}, g_{1}, g_{2}\right.$ are functions $)$
- heat operator: $L=\frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}$
- wave operator: $L=\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}$
(a.k.a. the d'Alembertian; denoted by \square).
- Laplace's operator: $L=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$
(a.k.a. the Laplacian; denoted by Δ or ∇^{2}).

How do we solve a linear homogeneous PDE?
Step 1: Find some solutions.
Step 2: Form linear combinations of solutions obtained on Step 1.
Step 3: Show that every solution can be approximated by solutions obtained on Step 2.

Similarly, we solve a linear homogeneous PDE with linear homogeneous boundary conditions (boundary problem).

One way to complete Step 1: the method of separation of variables.

Separation of variables

The method applies to certain linear PDEs. It is used to find some solutions.

Basic idea: to find a solution of the PDE (function of many variables) as a combination of several functions, each depending only on one variable.
For example, $u(x, t)=B(x)+C(t)$ or $u(x, t)=B(x) C(t)$.
The first example works perfectly for one equation: $\frac{\partial^{2} u}{\partial t \partial x}=0$.
The second example proved useful for many equations.

Heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

Suppose $u(x, t)=\phi(x) G(t)$. Then

$$
\frac{\partial u}{\partial t}=\phi(x) \frac{d G}{d t}, \quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{d^{2} \phi}{d x^{2}} G(t)
$$

Hence

$$
\phi(x) \frac{d G}{d t}=k \frac{d^{2} \phi}{d x^{2}} G(t)
$$

Divide both sides by $k \cdot \phi(x) \cdot G(t)=k \cdot u(x, t)$:

$$
\frac{1}{k G} \cdot \frac{d G}{d t}=\frac{1}{\phi} \cdot \frac{d^{2} \phi}{d x^{2}} .
$$

It follows that

$$
\frac{1}{k G} \cdot \frac{d G}{d t}=\frac{1}{\phi} \cdot \frac{d^{2} \phi}{d x^{2}}=-\lambda=\text { const. }
$$

λ is called the separation constant. The variables have been separated:

$$
\begin{aligned}
& \frac{d^{2} \phi}{d x^{2}}=-\lambda \phi \\
& \frac{d G}{d t}=-\lambda k G
\end{aligned}
$$

Proposition Suppose ϕ and G are solutions of the above ODEs for the same value of λ. Then $u(x, t)=\phi(x) G(t)$ is a solution of the heat equation.
Example. $u(x, t)=e^{-k t} \sin x$.

$$
\frac{d G}{d t}=-\lambda k G
$$

General solution: $G(t)=C_{0} e^{-\lambda k t}, C_{0}=$ const.

$$
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi
$$

Three cases: $\lambda>0, \lambda=0, \lambda<0$.
Case 1: $\lambda>0$. Then $\lambda=\mu^{2}$, where $\mu>0$. $\phi(x)=C_{1} \cos \mu x+C_{2} \sin \mu x, \quad C_{1}, C_{2}=$ const.
Case 2: $\lambda=0$. $\quad \phi(x)=C_{1}+C_{2} x$.
Case 3: $\lambda<0$. Then $\lambda=-\mu^{2}$, where $\mu>0$. $\phi(x)=C_{1} e^{\mu x}+C_{2} e^{-\mu x}$.

Theorem For any $C_{1}, C_{2} \in \mathbb{R}$ and $\mu>0$, the functions

$$
\begin{aligned}
& u_{+}(x, t)=e^{-k \mu^{2} t}\left(C_{1} \cos \mu x+C_{2} \sin \mu x\right) \\
& u_{0}(x, t)=C_{1}+C_{2} x \\
& u_{-}(x, t)=e^{k \mu^{2} t}\left(C_{1} e^{\mu x}+C_{2} e^{-\mu x}\right)
\end{aligned}
$$

are solutions of the heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} .
$$

Laplace's equation inside a rectangle

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad(0<x<L, 0<y<H)
$$

Boundary conditions:

$$
\begin{aligned}
u(0, y) & =g_{1}(y) \\
u(L, y) & =g_{2}(y) \\
u(x, 0) & =f_{1}(x) \\
u(x, H) & =f_{2}(x)
\end{aligned}
$$

Principle of superposition:

$$
u=u_{1}+u_{2}+u_{3}+u_{4}
$$

where

$$
\nabla^{2} u_{1}=\nabla^{2} u_{2}=\nabla^{2} u_{3}=\nabla^{2} u_{4}=0
$$

$$
u_{1}(x, 0)=f_{1}(x), \quad u_{1}(0, y)=u_{1}(L, y)=u_{1}(x, H)=0 ;
$$

$$
u_{2}(L, y)=g_{2}(y), \quad u_{2}(0, y)=u_{2}(x, 0)=u_{2}(x, H)=0
$$

$$
u_{3}(x, H)=f_{2}(x), \quad u_{3}(0, y)=u_{3}(L, y)=u_{3}(x, 0)=0
$$

$$
u_{4}(0, y)=g_{1}(y), \quad u_{4}(L, y)=u_{4}(x, 0)=u_{4}(x, H)=0
$$

Reduced boundary value problem

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad(0<x<L, 0<y<H)
$$

Boundary conditions:

$$
\begin{aligned}
u(0, y) & =0 \\
u(L, y) & =0 \\
u(x, 0) & =f_{1}(x) \\
u(x, H) & =0
\end{aligned}
$$

Separation of variables

We are looking for a solution $u(x, y)=\phi(x) h(y)$ satisfying all 3 homogeneous boundary conditions.
(Next step will be to combine such solutions into one that satisfies the nonhomogeneous boundary condition as well.)
PDE holds if

$$
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi \quad \text { and } \quad \frac{d^{2} h}{d y^{2}}=\lambda h
$$

for the same constant λ.
Boundary conditions $u(0, y)=u(L, y)=0$ hold if

$$
\phi(0)=\phi(L)=0 .
$$

Boundary condition $u(x, H)=0$ holds if

$$
h(H)=0 .
$$

Eigenvalue problem: $\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(L)=0$.
Eigenvalues: $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=1,2, \ldots$
Eigenfunctions: $\phi_{n}(x)=\sin \frac{n \pi x}{L}$.
Dependence on y :

$$
\begin{gathered}
h^{\prime \prime}=\lambda h, \quad h(H)=0 \\
\Longrightarrow \\
h(y)=C_{0} \sinh \sqrt{\lambda}(y-H)
\end{gathered}
$$

Solution of Laplace's equation:

$$
u(x, y)=\sin \frac{n \pi x}{L} \sinh \frac{n \pi(y-H)}{L}, \quad n=1,2, \ldots
$$

