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Topics in Applied Mathematics

Lecture 21:
Boundary value problems.

Separation of variables.



Differential equations

A differential equation is an equation involving an
unknown function and certain of its derivatives.

An ordinary differential equation (ODE) is an
equation involving an unknown function of one
variable and certain of its derivatives.

A partial differential equation (PDE) is an
equation involving an unknown function of two or
more variables and certain of its partial derivatives.



Examples

x2 + 2x + 1 = 0 (algebraic equation)

f (2x) = 2(f (x))2 − 1 (functional equation)

f ′(t) + t2f (t) = 4 (ODE)

∂u

∂x
+ 3

∂2u

∂x∂y
− u

∂u

∂y
(not an equation)

∂u

∂x
− 5

∂u

∂y
= u (PDE)

u + u2 =
∂2u

∂x∂y
(0, 0) (functional-differential

equation)



heat equation:
∂u

∂t
= k

∂2u

∂x2

wave equation:
∂2u

∂t2
= c2 ∂2u

∂x2

Laplace’s equation:
∂2u

∂x2
+

∂2u

∂y 2
= 0

In the first two equations, u = u(x , t). In the latter
one, u = u(x , y).



heat equation:
∂u

∂t
= k

(

∂2u

∂x2
+

∂2u

∂y 2

)

wave equation:
∂2u

∂t2
= c2

(

∂2u

∂x2
+

∂2u

∂y 2

)

Laplace’s equation:
∂2u

∂x2
+

∂2u

∂y 2
+

∂2u

∂z2
= 0

In the first two equations, u = u(x , y , t). In the
latter one, u = u(x , y , z).



Initial and boundary conditions for ODEs

y ′(t) = y(t), 0 ≤ t ≤ L.

General solution: y(t) = C1e
t , where C1 = const.

To determine a unique solution, we need one initial

condition.

For example, y(0) = 1. Then y(t) = et is the
unique solution.



y ′′(t) = −y(t), 0 ≤ t ≤ L.

General solution: y(t) = C1 cos t + C2 sin t, where
C1, C2 are constant.

To determine a unique solution, we need two initial
conditions. For example, y(0) = 1, y ′(0) = 0. Then
y(t) = cos t is the unique solution.

Alternatively, we may impose boundary conditions.
For example, y(0) = 0, y(L) = 1. In the case
L = π/2, y(t) = sin t is the unique solution.



PDE

∂2u

∂w ∂z
= 0, u = u(w , z)

Domain: a1 ≤ w ≤ a2, b1 ≤ z ≤ b2.

(we allow intervals [a1, a2] and [b1, b2] to be infinite
or semi-infinite)

∂

∂w

(

∂u

∂z

)

= 0,
∂u

∂z
(w , z) = γ(z)

u(w , z) =

∫ z

z0

γ(ξ) dξ + C (w)

u(w , z) = B(z) + C (w) (general solution)



Wave equation

∂2u

∂t2
= c2 ∂2u

∂x2

Change of independent variables:
w = x + ct, z = x − ct.

How does the equation look in new coordinates?

∂

∂t
=

∂w

∂t

∂

∂w
+

∂z

∂t

∂

∂z
= c

∂

∂w
− c

∂

∂z

∂

∂x
=

∂w

∂x

∂

∂w
+

∂z

∂x

∂

∂z
=

∂

∂w
+

∂

∂z



∂2u

∂t2
= c2

(

∂

∂w
− ∂

∂z

) (

∂

∂w
− ∂

∂z

)

u

= c2

(

∂2u

∂w 2
− 2

∂2u

∂w ∂z
+

∂2u

∂z2

)

.

∂2u

∂x2
=

∂2u

∂w 2
+ 2

∂2u

∂w ∂z
+

∂2u

∂z2
.

∂2u

∂t2
− c2 ∂2u

∂x2
= −4c2 ∂2u

∂w ∂z
.

Wave equation in new coordinates:
∂2u

∂w ∂z
= 0.

General solution: u(x , t) = B(x − ct) + C (x + ct)

(d’Alembert, 1747)



Boundary conditions for PDEs

Heat equation:
∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L,

0 ≤ t ≤ T .

Initial condition: u(x , 0) = f (x), where
f : [0, L] → R.

Boundary conditions: u(0, t) = u1(t),
u(L, t) = u2(t), where u1, u2 : [0, T ] → R.

Boundary conditions of the first kind: prescribed
temperature.



Another boundary conditions:
∂u

∂x
(0, t) = φ1(t),

∂u

∂x
(L, t) = φ2(t), where φ1, φ2 : [0, T ] → R.

Boundary conditions of the second kind:
prescribed heat flux.

A particular case:
∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0

(insulated boundary).



Robin conditions:

−∂u

∂x
(0, t) = −h ·

(

u(0, t) − u1(t)
)

,

−∂u

∂x
(L, t) = h ·

(

u(L, t) − u2(t)
)

,

where h = const > 0 and u1, u2 : [0, T ] → R.

Boundary conditions of the third kind: Newton’s
law of cooling.

Also, we may consider mixed boundary conditions,

for example, u(0, t) = u1(t),
∂u

∂x
(L, t) = φ2(t).



Wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
, 0 ≤ x ≤ L, 0 ≤ t ≤ T .

Two initial conditions: u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x), where f , g : [0, L] → R.

Some boundary conditions: u(0, t) = u(L, t) = 0.

Dirichlet conditions: fixed ends.

Another boundary conditions:
∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0.

Neumann conditions: free ends.



Linear equations

An equation is called linear if it can be written in
the form

L(u) = f ,

where L : V1 → V2 is a linear map, f ∈ V2 is given,
and u ∈ V1 is the unknown. If f = 0 then the
linear equation is called homogeneous.

Theorem The general solution of a linear equation
L(u) = f is

u = u1 + u0,

where u1 is a particular solution and u0 is the general
solution of the homogeneous equation L(u) = 0.



Linear differential operators

• ordinary differential operator:

L = g0
d2

dx2
+ g1

d

dx
+ g2 (g0, g1, g2 are functions)

• heat operator: L =
∂

∂t
− k

∂2

∂x2

• wave operator: L =
∂2

∂t2
− c2 ∂2

∂x2

(a.k.a. the d’Alembertian; denoted by �).

• Laplace’s operator: L =
∂2

∂x2
+

∂2

∂y 2

(a.k.a. the Laplacian; denoted by ∆ or ∇2).



How do we solve a linear homogeneous PDE?

Step 1: Find some solutions.

Step 2: Form linear combinations of solutions
obtained on Step 1.

Step 3: Show that every solution can be
approximated by solutions obtained on Step 2.

Similarly, we solve a linear homogeneous PDE with
linear homogeneous boundary conditions (boundary
problem).

One way to complete Step 1: the method of
separation of variables.



Separation of variables

The method applies to certain linear PDEs. It is
used to find some solutions.

Basic idea: to find a solution of the PDE (function
of many variables) as a combination of several
functions, each depending only on one variable.

For example, u(x , t) = B(x) + C (t) or
u(x , t) = B(x)C (t).

The first example works perfectly for one equation:
∂2u

∂t ∂x
= 0.

The second example proved useful for many

equations.



Heat equation

∂u

∂t
= k

∂2u

∂x2

Suppose u(x , t) = φ(x)G (t). Then

∂u

∂t
= φ(x)

dG

dt
,

∂2u

∂x2
=

d2φ

dx2
G (t).

Hence

φ(x)
dG

dt
= k

d2φ

dx2
G (t).

Divide both sides by k · φ(x) · G (t) = k · u(x , t):

1

kG
· dG

dt
=

1

φ
· d2φ

dx2
.



It follows that

1

kG
· dG

dt
=

1

φ
· d2φ

dx2
= −λ = const.

λ is called the separation constant. The variables
have been separated:

d2φ
dx2 = −λφ,

dG
dt

= −λkG .

Proposition Suppose φ and G are solutions of the
above ODEs for the same value of λ. Then
u(x , t) = φ(x)G (t) is a solution of the heat
equation.

Example. u(x , t) = e−kt sin x .



dG

dt
= −λkG

General solution: G (t) = C0e
−λkt , C0 = const.

d2φ

dx2
= −λφ

Three cases: λ > 0, λ = 0, λ < 0.

Case 1: λ > 0. Then λ = µ2, where µ > 0.
φ(x) = C1 cos µx + C2 sin µx , C1, C2 = const.

Case 2: λ = 0. φ(x) = C1 + C2x .

Case 3: λ < 0. Then λ = −µ2, where µ > 0.
φ(x) = C1e

µx + C2e
−µx .



Theorem For any C1, C2 ∈ R and µ > 0,
the functions

u+(x , t) = e−kµ2t(C1 cos µx + C2 sin µx),

u0(x , t) = C1 + C2x ,

u−(x , t) = ekµ2t(C1e
µx + C2e

−µx)

are solutions of the heat equation

∂u

∂t
= k

∂2u

∂x2
.



Laplace’s equation inside a rectangle

∂2u

∂x2
+

∂2u

∂y 2
= 0 (0 < x < L, 0 < y < H)

Boundary conditions:

u(0, y) = g1(y)

u(L, y) = g2(y)

u(x , 0) = f1(x)

u(x , H) = f2(x)



Principle of superposition:

u = u1 + u2 + u3 + u4,
where

∇2u1 = ∇2u2 = ∇2u3 = ∇2u4 = 0,

u1(x , 0) = f1(x), u1(0, y) = u1(L, y) = u1(x , H) = 0;

u2(L, y) = g2(y), u2(0, y) = u2(x , 0) = u2(x , H) = 0;

u3(x , H) = f2(x), u3(0, y) = u3(L, y) = u3(x , 0) = 0;

u4(0, y) = g1(y), u4(L, y) = u4(x , 0) = u4(x , H) = 0.



Reduced boundary value problem

∂2u

∂x2
+

∂2u

∂y 2
= 0 (0 < x < L, 0 < y < H)

Boundary conditions:

u(0, y) = 0

u(L, y) = 0

u(x , 0) = f1(x)

u(x , H) = 0



Separation of variables

We are looking for a solution u(x , y) = φ(x)h(y)
satisfying all 3 homogeneous boundary conditions.
(Next step will be to combine such solutions into one that
satisfies the nonhomogeneous boundary condition as well.)

PDE holds if
d2φ
dx2 = −λφ and d2h

dy2 = λh

for the same constant λ.

Boundary conditions u(0, y) = u(L, y) = 0 hold if

φ(0) = φ(L) = 0.

Boundary condition u(x , H) = 0 holds if

h(H) = 0.



Eigenvalue problem: φ′′ = −λφ, φ(0) = φ(L) = 0.

Eigenvalues: λn = (nπ
L

)2, n = 1, 2, . . .

Eigenfunctions: φn(x) = sin nπx
L

.

Dependence on y :

h′′ = λh, h(H) = 0.

=⇒ h(y) = C0 sinh
√

λ(y − H)

Solution of Laplace’s equation:

u(x , y) = sin nπx
L

sinh nπ(y−H)
L

, n = 1, 2, . . .


