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Lecture 23:

Fourier series (continued).



Fourier series

Standard Fourier series is a series of the form

a0 +
∑∞

n=1
an cos nx +

∑∞

n=1
bn sin nx .

Each term of the series is a 2π-periodic function.
If the series converges, then the sum is also
2π-periodic.

More general Fourier series:

a0 +
∑∞

n=1
an cos

nπx

L
+

∑∞

n=1
bn sin

nπx

L
.

Each term of this series is a 2L-periodic function.



Fourier series

To each integrable function F : [−L, L] → R we
associate a Fourier series

a0 +
∑∞

n=1
an cos

nπx

L
+

∑∞

n=1
bn sin

nπx

L

such that

a0 = 1

2L

∫

L

−L

F (x) dx

and for n ≥ 1,

an = 1

L

∫

L

−L

F (x) cos nπx

L
dx ,

bn = 1

L

∫

L

−L

F (x) sin nπx

L
dx .



Example. Fourier series of the function F (x) = x

on the interval [−π, π] is

2
∑∞

n=1

(−1)n+1

n
sin nx

= 2

(

sin x −
1

2
sin 2x +

1

3
sin 3x −

1

4
sin 4x + · · ·

)

.

Fourier series of the same function F (x) = x on an
interval [−L, L] is

2L

π

∑∞

n=1

(−1)n+1

n
sin

nπx

L
.



Convergence theorems

Theorem 1 Fourier series of a continuous function
on [−L, L] converges to this function with respect
to the distance

dist(f , g) = ‖f − g‖ =

(
∫

L

−L

|f (x) − g(x)|2 dx

)1/2

.

However convergence in the sense of Theorem 1
need not imply pointwise convergence.

Theorem 2 Fourier series of a smooth function on
[−L, L] converges pointwise to this function on the
open interval (−L, L).



Jump discontinuity

Piecewise continuous = finitely many
jump discontinuities



Piecewise smooth function

(both function and its derivative
are piecewise continuous)



Continuous, but not piecewise smooth function



Convergence theorem

Suppose f : [−L, L] → R is a piecewise smooth
function. Let F : R → R be the 2L-periodic

extension of f . That is, F is 2L-periodic and
F (x) = f (x) for −L < x ≤ L. Clearly, F is also
piecewise smooth.

Theorem The Fourier series of the function f

converges everywhere. The sum at a point x is
equal to F (x) if F is continuous at x . Otherwise
the sum is equal to

F (x−) + F (x+)

2
.



Function and its Fourier series



Gibbs’ phenomenon

π

π

π

π

Left graph: Fourier series of F (x) = 2x .
Right graph: 12th partial sum of the series.

The maximal value of the nth partial sum for large
n is about 17.9% higher than the maximal value of
the series. This is the so-called Gibbs’ overshoot.



Fourier sine and cosine series

Suppose f (x) is an integrable function on [0, L].
The Fourier sine series of f

∑∞

n=1
Bn sin nπx

L

and the Fourier cosine series of f

A0 +
∑∞

n=1
An cos nπx

L

are defined as follows:

Bn = 2

L

∫

L

0

f (x) sin nπx

L
dx ;

A0 = 1

L

∫

L

0

f (x) dx , An = 2

L

∫

L

0

f (x) cos nπx

L
dx , n ≥ 1.



f (x) ∼ a0 +
∑∞

n=1
an cos nπx

L
+

∑∞

n=1
bn sin nπx

L
,

where

a0 = 1

2L

∫

L

−L

f (x) dx , an = 1

L

∫

L

−L

f (x) cos nπx

L
dx , n ≥ 1,

bn = 1

L

∫

L

−L

f (x) sin nπx

L
dx .

If f is odd, f (−x) = −f (x), then an = 0 and

bn = 2

L

∫

L

0

f (x) sin nπx

L
dx .

Similarly, if f is even, f (−x) = f (x), then bn = 0
and an = An.



Proposition (i) The Fourier series of an odd
function f : [−L, L] → R coincides with its Fourier
sine series on [0, L].

(ii) The Fourier series of an even function
f : [−L, L] → R coincides with its Fourier cosine
series on [0, L].

Conversely, the Fourier sine series of a function
f : [0, L] → R is the Fourier series of its odd

extension to [−L, L].
The Fourier cosine series of f is the Fourier series

of its even extension to [−L, L].



Fourier series
(2L-periodic)



Fourier sine series
(2L-periodic and odd)



Fourier cosine series
(2L-periodic and even)



Example. Fourier cosine series of F (x) = x .

A0 =
1

π

∫

π

0

x dx =
π

2
,

An =
2

π

∫

π

0

x cos(nx) dx =
2

nπ

∫

π

0

x(sin nx)′ dx

=
2

nπ
x sin(nx)

∣

∣

∣

π

0

−
2

nπ

∫

π

0

sin nx dx = −
2

nπ

∫

π

0

sin nx dx

=
2

n2π
cos(nx)

∣

∣

∣

π

0

=

{

−4/(n2π), n odd

0, n even

x ∼
π

2
−

4

π

(

cos x +
cos 3x

32
+

cos 5x

52
+

cos 7x

72
+ · · ·

)



Example. Fourier series of the function f (x) = x2.

Proposition Fourier series of an odd function
contains only sines, while Fourier series of an even
function contains only cosines and a constant term.

Theorem Suppose that a function
f : [−π, π] → R is continuous, piecewise smooth,
and f (−π) = f (π).

Then the Fourier series of f ′ can be obtained via
term-by-term differentiation of the Fourier series
of f .



Example. Fourier series of the function f (x) = x2.

x2 ∼ a0 + a1 cos x + a2 cos 2x + a3 cos 3x + · · ·

Term-by-term differentiation yields

−a1 sin x − 2a2 sin 2x − 3a3 sin 3x − 4a4 sin 4x − · · ·

This should be the Fourier series of f ′(x) = 2x ,
which is

2x ∼ 4
(

sin x − 1

2
sin 2x + 1

3
sin 3x − 1

4
sin 4x + · · ·

)

.

Hence an = (−1)n 4

n2 for n ≥ 1.

It remains to find a0 = 1

2π

∫ π

−π

x2 dx = π2

3
.



Example. Fourier series of the function f (x) = x2.

x2 ∼
π2

3
+ 4

∑∞

n=1
(−1)n

cos nx

n2

=
π2

3
+ 4

(

− cos x +
1

4
cos 2x −

1

9
cos 3x +

1

16
cos 4x − · · ·

)

The series converges to f (x) for any −π ≤ x ≤ π.

For x = 0 we obtain:
π2

12
= 1−

1

22
+

1

32
−

1

42
+ · · ·

For x = π we obtain:
π2

6
= 1+

1

22
+

1

32
+

1

42
+ · · ·



Hilbert basis

Let V be an infinite-dimensional inner product
space. Suppose that f1, f2, . . . is a maximal

orthogonal set in V , i.e., there is no nonzero
vector f ∈ V such that 〈f , fn〉 = 0, n = 1, 2, . . . .

Then f1, f2, . . . is a Hilbert basis for V , which
means that any g ∈ V can be expanded into a
series

g =
∑∞

n=1
cnfn (cn ∈ R)

that converges with respect to the distance
dist(f , g) = ‖f − g‖ =

√

〈f − g , f − g〉.



g =
∑∞

n=1

cnfn =⇒ 〈g , h〉 =
∑∞

n=1

cn〈fn, h〉, h ∈ V .

In particular, 〈g , fm〉 =
∑∞

n=1

cn〈fn, fm〉 = cm〈fm, fm〉.

=⇒ the expansion is unique: cm =
〈g , fm〉

〈fm, fm〉
.

Also,

〈g , g〉 =
∑∞

n=1

cn〈fn, g〉 =
∑∞

n=1

|cn|
2〈fn, fn〉.

〈g , g〉 =
∑∞

n=1

|〈g , fn〉|
2

〈fn, fn〉

(Parseval’s equality)



V = C [a, b], 〈f , g〉 =

∫

b

a

f (x)g(x) dx .

h0(x) = 1, h1(x) = cos πx

L
, . . . , hn(x) = cos nπx

L
, . . . ,

f1(x) = sin πx

L
, f2(x) = sin 2πx

L
, . . . , fn(x) = sin nπx

L
,. . .

Functions hn (n ≥ 0) and fn (n ≥ 1) form a maximal
orthogonal set in C [−L, L]. Functions hn (n ≥ 0) form a
maximal orthogonal set in C [0, L]. Functions fn (n ≥ 1) form
another maximal orthogonal set in C [0, L].

Parseval’s equality for Fourier sine series:

2

L

∫

L

0

|f (x)|2 dx =
∑∞

n=1
|cn|

2,

where f (x) ∼
∑∞

n=1
cn sin nπx

L
.



Example. f (x) = x , 0 ≤ x ≤ π.

f (x) ∼
∑∞

n=1
(−1)n+1 2

n
sin nx

Parseval’s equality:

2

π

∫ π

0

x2 dx =
∑∞

n=1
|cn|

2 =
∑∞

n=1

4

n2
.

2

π
·
π3

3
=

∑∞

n=1

4

n2

∑∞

n=1

1

n2
=

π2

6


