MATH 311
Topics in Applied Mathematics
Lecture 23:
Fourier series (continued).

Fourier series

Standard Fourier series is a series of the form

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

Each term of the series is a 2π-periodic function. If the series converges, then the sum is also 2π-periodic.

More general Fourier series:

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

Each term of this series is a $2 L$-periodic function.

Fourier series

To each integrable function $F:[-L, L] \rightarrow \mathbb{R}$ we associate a Fourier series

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

such that

$$
a_{0}=\frac{1}{2 L} \int_{-L}^{L} F(x) d x
$$

and for $n \geq 1$,

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} F(x) \cos \frac{n \pi x}{L} d x \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} F(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

Example. Fourier series of the function $F(x)=x$ on the interval $[-\pi, \pi]$ is

$$
\begin{aligned}
& 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n x \\
= & 2\left(\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x-\frac{1}{4} \sin 4 x+\cdots\right) .
\end{aligned}
$$

Fourier series of the same function $F(x)=x$ on an interval $[-L, L]$ is

$$
\frac{2 L}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{L} .
$$

Convergence theorems

Theorem 1 Fourier series of a continuous function on $[-L, L]$ converges to this function with respect to the distance
$\operatorname{dist}(f, g)=\|f-g\|=\left(\int_{-L}^{L}|f(x)-g(x)|^{2} d x\right)^{1 / 2}$.
However convergence in the sense of Theorem 1 need not imply pointwise convergence.
Theorem 2 Fourier series of a smooth function on $[-L, L]$ converges pointwise to this function on the open interval $(-L, L)$.

Jump discontinuity
 Piecewise continuous $=$ finitely many jump discontinuities

Piecewise smooth function
(both function and its derivative are piecewise continuous)

Continuous, but not piecewise smooth function

Convergence theorem

Suppose $f:[-L, L] \rightarrow \mathbb{R}$ is a piecewise smooth function. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be the $2 L$-periodic extension of f. That is, F is $2 L$-periodic and $F(x)=f(x)$ for $-L<x \leq L$. Clearly, F is also piecewise smooth.
Theorem The Fourier series of the function f converges everywhere. The sum at a point x is equal to $F(x)$ if F is continuous at x. Otherwise the sum is equal to

$$
\frac{F(x-)+F(x+)}{2} .
$$

Gibbs' phenomenon

Left graph: Fourier series of $F(x)=2 x$.
Right graph: 12th partial sum of the series.
The maximal value of the nth partial sum for large n is about 17.9% higher than the maximal value of the series. This is the so-called Gibbs' overshoot.

Fourier sine and cosine series

Suppose $f(x)$ is an integrable function on $[0, L]$.
The Fourier sine series of f

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

and the Fourier cosine series of f

$$
A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}
$$

are defined as follows:

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x ;
$$

$A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, \quad A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n \geq 1$.
$f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}$,
where

$$
\begin{gathered}
a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x, \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n \geq 1, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x .
\end{gathered}
$$

If f is odd, $f(-x)=-f(x)$, then $a_{n}=0$ and

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Similarly, if f is even, $f(-x)=f(x)$, then $b_{n}=0$ and $a_{n}=A_{n}$.

Proposition (i) The Fourier series of an odd function $f:[-L, L] \rightarrow \mathbb{R}$ coincides with its Fourier sine series on $[0, L]$.
(ii) The Fourier series of an even function $f:[-L, L] \rightarrow \mathbb{R}$ coincides with its Fourier cosine series on $[0, L]$.

Conversely, the Fourier sine series of a function $f:[0, L] \rightarrow \mathbb{R}$ is the Fourier series of its odd extension to $[-L, L]$.

The Fourier cosine series of f is the Fourier series of its even extension to $[-L, L]$.

Fourier series
(2L-periodic)

Fourier cosine series
(2L-periodic and even)

Example. Fourier cosine series of $F(x)=x$.

$$
\begin{aligned}
A_{0} & =\frac{1}{\pi} \int_{0}^{\pi} x d x=\frac{\pi}{2}, \\
A_{n} & =\frac{2}{\pi} \int_{0}^{\pi} x \cos (n x) d x=\frac{2}{n \pi} \int_{0}^{\pi} x(\sin n x)^{\prime} d x \\
& =\left.\frac{2}{n \pi} x \sin (n x)\right|_{0} ^{\pi}-\frac{2}{n \pi} \int_{0}^{\pi} \sin n x d x=-\frac{2}{n \pi} \int_{0}^{\pi} \sin n x d x \\
& =\left.\frac{2}{n^{2} \pi} \cos (n x)\right|_{0} ^{\pi}=\left\{\begin{array}{l}
-4 /\left(n^{2} \pi\right), n \text { odd } \\
0, \\
n \text { even }
\end{array}\right.
\end{aligned}
$$

$$
x \sim \frac{\pi}{2}-\frac{4}{\pi}\left(\cos x+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\frac{\cos 7 x}{7^{2}}+\cdots\right)
$$

Example. Fourier series of the function $f(x)=x^{2}$.
Proposition Fourier series of an odd function contains only sines, while Fourier series of an even function contains only cosines and a constant term.

Theorem Suppose that a function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ is continuous, piecewise smooth, and $f(-\pi)=f(\pi)$.

Then the Fourier series of f^{\prime} can be obtained via term-by-term differentiation of the Fourier series of f.

Example. Fourier series of the function $f(x)=x^{2}$.

$x^{2} \sim a_{0}+a_{1} \cos x+a_{2} \cos 2 x+a_{3} \cos 3 x+\cdots$

Term-by-term differentiation yields
$-a_{1} \sin x-2 a_{2} \sin 2 x-3 a_{3} \sin 3 x-4 a_{4} \sin 4 x-\cdots$
This should be the Fourier series of $f^{\prime}(x)=2 x$, which is
$2 x \sim 4\left(\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x-\frac{1}{4} \sin 4 x+\cdots\right)$.
Hence $a_{n}=(-1)^{n} \frac{4}{n^{2}}$ for $n \geq 1$.
It remains to find $a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\frac{\pi^{2}}{3}$.

Example. Fourier series of the function $f(x)=x^{2}$.

$$
x^{2} \sim \frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}
$$

$=\frac{\pi^{2}}{3}+4\left(-\cos x+\frac{1}{4} \cos 2 x-\frac{1}{9} \cos 3 x+\frac{1}{16} \cos 4 x-\cdots\right)$
The series converges to $f(x)$ for any $-\pi \leq x \leq \pi$.
For $x=0$ we obtain: $\frac{\pi^{2}}{12}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots$
For $x=\pi$ we obtain: $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots$

Hilbert basis

Let V be an infinite-dimensional inner product space. Suppose that f_{1}, f_{2}, \ldots is a maximal orthogonal set in V, i.e., there is no nonzero vector $f \in V$ such that $\left\langle f, f_{n}\right\rangle=0, n=1,2, \ldots$.
Then f_{1}, f_{2}, \ldots is a Hilbert basis for V, which means that any $g \in V$ can be expanded into a series

$$
g=\sum_{n=1}^{\infty} c_{n} f_{n} \quad\left(c_{n} \in \mathbb{R}\right)
$$

that converges with respect to the distance $\operatorname{dist}(f, g)=\|f-g\|=\sqrt{\langle f-g, f-g\rangle}$.
$g=\sum_{n=1}^{\infty} c_{n} f_{n} \quad \Longrightarrow \quad\langle g, h\rangle=\sum_{n=1}^{\infty} c_{n}\left\langle f_{n}, h\right\rangle, h \in V$.
In particular, $\left\langle g, f_{m}\right\rangle=\sum_{n=1}^{\infty} c_{n}\left\langle f_{n}, f_{m}\right\rangle=c_{m}\left\langle f_{m}, f_{m}\right\rangle$.
\Longrightarrow the expansion is unique: $c_{m}=\frac{\left\langle g, f_{m}\right\rangle}{\left\langle f_{m}, f_{m}\right\rangle}$.
Also,

$$
\begin{aligned}
&\langle g, g\rangle= \sum_{n=1}^{\infty} c_{n}\left\langle f_{n}, g\right\rangle=\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}\left\langle f_{n}, f_{n}\right\rangle . \\
&\langle g, g\rangle=\sum_{n=1}^{\infty} \frac{\left|\left\langle g, f_{n}\right\rangle\right|^{2}}{\left\langle f_{n}, f_{n}\right\rangle}
\end{aligned}
$$

(Parseval's equality)
$V=C[a, b], \quad\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$.
$h_{0}(x)=1, h_{1}(x)=\cos \frac{\pi x}{L}, \ldots, h_{n}(x)=\cos \frac{n \pi x}{L}, \ldots$,
$f_{1}(x)=\sin \frac{\pi x}{L}, f_{2}(x)=\sin \frac{2 \pi x}{L}, \ldots, f_{n}(x)=\sin \frac{n \pi x}{L}, \ldots$
Functions $h_{n}(n \geq 0)$ and $f_{n}(n \geq 1)$ form a maximal orthogonal set in $C[-L, L]$. Functions $h_{n}(n \geq 0)$ form a maximal orthogonal set in $C[0, L]$. Functions $f_{n}(n \geq 1)$ form another maximal orthogonal set in $C[0, L]$.

Parseval's equality for Fourier sine series:

$$
\frac{2}{L} \int_{0}^{L}|f(x)|^{2} d x=\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}
$$

where $f(x) \sim \sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{L}$.

Example. $f(x)=x, 0 \leq x \leq \pi$.

$$
f(x) \sim \sum_{n=1}^{\infty}(-1)^{n+1} \frac{2}{n} \sin n x
$$

Parseval's equality:

$$
\begin{gathered}
\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}=\sum_{n=1}^{\infty} \frac{4}{n^{2}} \\
\frac{2}{\pi} \cdot \frac{\pi^{3}}{3}=\sum_{n=1}^{\infty} \frac{4}{n^{2}} \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
\end{gathered}
$$

