MATH 311
 Topics in Applied Mathematics

Lecture 25:
 Bessel functions (continued).

Bessel's differential equation of order $m \geq 0$:

$$
z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}+\left(z^{2}-m^{2}\right) f=0
$$

The equation is considered on the interval $(0, \infty)$.
Solutions are called Bessel functions of order m.
$J_{m}(z)$: Bessel function of the first kind, $Y_{m}(z)$: Bessel function of the second kind.
The general Bessel function of order m is $f(z)=c_{1} J_{m}(z)+c_{2} Y_{m}(z)$, where c_{1}, c_{2} are constants.

Bessel functions of the 1st and 2nd kind

Asymptotics at the origin

$J_{m}(z)$ is regular while $Y_{m}(z)$ has a singularity at 0.
As $z \rightarrow 0$, we have for any integer $m>0$

$$
J_{m}(z) \sim \frac{1}{2^{m} m!} z^{m}, \quad Y_{m}(z) \sim-\frac{2^{m}(m-1)!}{\pi} z^{-m} .
$$

Also, $\quad J_{0}(z) \sim 1, \quad Y_{0}(z) \sim \frac{2}{\pi} \log z$.
To get the asymptotics for a noninteger m, we replace m ! by $\Gamma(m+1)$ and $(m-1)$! by $\Gamma(m)$.
$J_{m}(z)$ is uniquely determined by this asymptotics while $Y_{m}(z)$ is not.

Asymptotics at infinity

As $z \rightarrow \infty$, we have

$$
\begin{aligned}
& J_{m}(z)=\sqrt{\frac{2}{\pi z}} \cos \left(z-\frac{\pi}{4}-\frac{m \pi}{2}\right)+O\left(z^{-1}\right) \\
& Y_{m}(z)=\sqrt{\frac{2}{\pi z}} \sin \left(z-\frac{\pi}{4}-\frac{m \pi}{2}\right)+O\left(z^{-1}\right)
\end{aligned}
$$

Both $J_{m}(z)$ and $Y_{m}(z)$ are uniquely determined by this asymptotics.
For $m=1 / 2$, these are exact formulas.

Original definition by Bessel (only for integer m):

$$
J_{m}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (z \sin \tau-m \tau) d \tau
$$

$=\frac{1}{\pi} \int_{0}^{\pi} \cos (z \sin \tau) \cos (m \tau) d \tau+\frac{1}{\pi} \int_{0}^{\pi} \sin (z \sin \tau) \sin (m \tau) d \tau$.
The first integral is 0 for any odd m while the second integral is 0 for any even m. It follows that

$$
\begin{aligned}
& \cos (z \sin \tau)=J_{0}(z)+2 \sum_{n=1}^{\infty} J_{2 n}(z) \cos (2 n \tau) \\
& \sin (z \sin \tau)=2 \sum_{n=1}^{\infty} J_{2 n-1}(z) \sin ((2 n-1) \tau)
\end{aligned}
$$

Zeros of Bessel functions

Let $0<j_{m, 1}<j_{m, 2}<\ldots$ be zeros of $J_{m}(z)$ and $0<y_{m, 1}<y_{m, 2}<\ldots$ be zeros of $Y_{m}(z)$.
Let $0 \leq j_{m, 1}^{\prime}<j_{m, 2}^{\prime}<\ldots$ be zeros of $J_{m}^{\prime}(z)$ and $0<y_{m, 1}^{\prime}<y_{m, 2}^{\prime}<\ldots$ be zeros of $Y_{m}^{\prime}(z)$.
(We let $j_{0,1}^{\prime}=0$ while $j_{m, 1}^{\prime}>0$ if $m>0$.)
Then the zeros are interlaced:

$$
\begin{aligned}
m & \leq j_{m, 1}^{\prime}<y_{m, 1}<y_{m, 1}^{\prime}<j_{m, 1}< \\
& <j_{m, 2}^{\prime}<y_{m, 2}<y_{m, 2}^{\prime}<j_{m, 2}<\ldots
\end{aligned}
$$

Asymptotics of the nth zeros as $n \rightarrow \infty$:

$$
\left.\left.\begin{array}{rl}
j_{m, n}^{\prime} & \approx y_{m, n} \\
y_{m, n}^{\prime} \approx j_{m, n} & \sim\left(n+\frac{1}{2} m-\frac{3}{4}\right) \pi, \\
2
\end{array}\right)-\frac{1}{4}\right) \pi .
$$

Dirichlet Laplacian in a circle

Eigenvalue problem:

$$
\begin{aligned}
& \nabla^{2} \phi+\lambda \phi=0 \text { in } D=\left\{(x, y): x^{2}+y^{2} \leq R^{2}\right\} \\
& \left.\phi\right|_{\partial D}=0
\end{aligned}
$$

Separation of variables in polar coordinates: $\phi(r, \theta)=f(r) h(\theta)$. Reduces the problem to two one-dimensional eigenvalue problems:

$$
\begin{gathered}
r^{2} f^{\prime \prime}+r f^{\prime}+\left(\lambda r^{2}-\mu\right) f=0, \quad f(R)=0,|f(0)|<\infty ; \\
h^{\prime \prime}=-\mu h, \quad h(-\pi)=h(\pi), h^{\prime}(-\pi)=h^{\prime}(\pi) .
\end{gathered}
$$

The latter problem has eigenvalues $\mu_{m}=m^{2}$, $m=0,1,2, \ldots$, and eigenfunctions $h_{0}=1$, $h_{m}(\theta)=\cos m \theta, \tilde{h}_{m}(\theta)=\sin m \theta, m \geq 1$.

The 1st intermediate eigenvalue problem:
$r^{2} f^{\prime \prime}+r f^{\prime}+\left(\lambda r^{2}-m^{2}\right) f=0, \quad f(R)=0,|f(0)|<\infty$.
New variable $z=\sqrt{\lambda} \cdot r$ reduces the equation to
Bessel's equation of order m. Hence the general solution is $f(r)=c_{1} J_{m}(\sqrt{\lambda} r)+c_{2} Y_{m}(\sqrt{\lambda} r)$, where c_{1}, c_{2} are constants.

Singular condition $|f(0)|<\infty$ holds if $c_{2}=0$. Nonzero solution exists if $J_{m}(\sqrt{\lambda} R)=0$.
Thus there are infinitely many eigenvalues $\lambda_{m, 1}, \lambda_{m, 2}, \ldots$, where $\sqrt{\lambda_{m, n}} R=j_{m, n}$, i.e., $\lambda_{m, n}=\left(j_{m, n} / R\right)^{2}$. Associated eigenfunctions: $f_{m, n}(r)=J_{m}\left(j_{m, n} r / R\right)$.

The eigenfunctions $f_{m, n}(r)=J_{m}\left(j_{m, n} r / R\right)$ are orthogonal relative to the inner product

$$
\langle f, g\rangle_{r}=\int_{0}^{R} f(r) g(r) r d r
$$

Any piecewise continuous function g on $[0, R]$ is expanded into a Fourier-Bessel series

$$
g(r)=\sum_{n=1}^{\infty} c_{n} J_{m}\left(j_{m, n} \frac{r}{R}\right), \quad c_{n}=\frac{\left\langle g, f_{m, n}\right\rangle_{r}}{\left\langle f_{m, n}, f_{m, n}\right\rangle_{r}},
$$

that converges in the mean (with weight r).
If g is piecewise smooth, then the series converges at its points of continuity.

Eigenvalue problem:

$$
\begin{aligned}
& \nabla^{2} \phi+\lambda \phi=0 \text { in } D=\left\{(x, y): x^{2}+y^{2} \leq R^{2}\right\} \\
& \left.\phi\right|_{\partial D}=0
\end{aligned}
$$

Eigenvalues: $\quad \lambda_{m, n}=\left(j_{m, n} / R\right)^{2}$, where $m=0,1,2, \ldots, n=1,2, \ldots$, and $j_{m, n}$ is the nth positive zero of the Bessel function J_{m}.

Eigenfunctions: $\quad \phi_{0, n}(r, \theta)=J_{0}\left(j_{0, n} r / R\right)$.
For $m \geq 1, \quad \phi_{m, n}(r, \theta)=J_{m}\left(j_{m, n} r / R\right) \cos m \theta$ and $\tilde{\phi}_{m, n}(r, \theta)=J_{m}\left(j_{m, n} r / R\right) \sin m \theta$.

Neumann Laplacian in a circle

Eigenvalue problem:

$$
\begin{aligned}
& \nabla^{2} \phi+\lambda \phi=0 \text { in } D=\left\{(x, y): x^{2}+y^{2} \leq R^{2}\right\} \\
& \left.\frac{\partial \phi}{\partial n}\right|_{\partial D}=0
\end{aligned}
$$

Again, separation of variables in polar coordinates, $\phi(r, \theta)=f(r) h(\theta)$, reduces the problem to two one-dimensional eigenvalue problems:

$$
\begin{gathered}
r^{2} f^{\prime \prime}+r f^{\prime}+\left(\lambda r^{2}-\mu\right) f=0, \quad f^{\prime}(R)=0,|f(0)|<\infty ; \\
h^{\prime \prime}=-\mu h, \quad h(-\pi)=h(\pi), h^{\prime}(-\pi)=h^{\prime}(\pi) .
\end{gathered}
$$

The 2 nd problem has eigenvalues $\mu_{m}=m^{2}$, $m=0,1,2, \ldots$, and eigenfunctions $h_{0}=1$, $h_{m}(\theta)=\cos m \theta, \tilde{h}_{m}(\theta)=\sin m \theta, m \geq 1$.

The 1st one-dimensional eigenvalue problem:
$r^{2} f^{\prime \prime}+r f^{\prime}+\left(\lambda r^{2}-m^{2}\right) f=0, \quad f^{\prime}(R)=0,|f(0)|<\infty$.
For $\lambda>0$, the general solution of the equation is $f(r)=c_{1} J_{m}(\sqrt{\lambda} r)+c_{2} Y_{m}(\sqrt{\lambda} r)$, where c_{1}, c_{2} are constants.
Singular condition $|f(0)|<\infty$ holds if $c_{2}=0$.
Nonzero solution exists if $J_{m}^{\prime}(\sqrt{\lambda} R)=0$.
Thus there are infinitely many eigenvalues $\lambda_{m, 1}, \lambda_{m, 2}, \ldots$, where $\sqrt{\lambda_{m, n}} R=j_{m, n}^{\prime}$, i.e., $\lambda_{m, n}=\left(j_{m, n}^{\prime} / R\right)^{2}$.
Associated eigenfunctions: $f_{m, n}(r)=J_{m}\left(j_{m, n}^{\prime} r / R\right)$.
$\lambda=0$ is an eigenvalue only for $m=0$.

Eigenvalue problem:

$$
\begin{aligned}
& \nabla^{2} \phi+\lambda \phi=0 \text { in } D=\left\{(x, y): x^{2}+y^{2} \leq R^{2}\right\} \\
& \left.\frac{\partial \phi}{\partial n}\right|_{\partial D}=0
\end{aligned}
$$

Eigenvalues: $\quad \lambda_{m, n}=\left(j_{m, n}^{\prime} / R\right)^{2}$, where $m=0,1,2, \ldots, n=1,2, \ldots$, and $j_{m, n}^{\prime}$ is the nth positive zero of J_{m}^{\prime} (exception: $\left.j_{0,1}^{\prime}=0\right)$.
Eigenfunctions: $\quad \phi_{0, n}(r, \theta)=J_{0}\left(j_{0, n}^{\prime} r / R\right)$.
In particular, $\phi_{0,1}=1$.
For $m \geq 1, \quad \phi_{m, n}(r, \theta)=J_{m}\left(j_{m, n}^{\prime} r / R\right) \cos m \theta$ and $\tilde{\phi}_{m, n}(r, \theta)=J_{m}\left(j_{m, n}^{\prime} r / R\right) \sin m \theta$.

Laplacian in a circular sector

Eigenvalue problem:
$\nabla^{2} \phi+\lambda \phi=0$ in $D=\{(r, \theta): r<R, 0<\theta<L\}$, $\left.\phi\right|_{\partial D}=0$.
Again, separation of variables in polar coordinates, $\phi(r, \theta)=f(r) h(\theta)$, reduces the problem to two one-dimensional eigenvalue problems:

$$
\begin{gathered}
r^{2} f^{\prime \prime}+r f^{\prime}+\left(\lambda r^{2}-\mu\right) f=0, \quad f(0)=f(R)=0 \\
h^{\prime \prime}=-\mu h, \quad h(0)=h(L)=0
\end{gathered}
$$

The 2 nd problem has eigenvalues $\mu_{m}=\left(\frac{m \pi}{L}\right)^{2}$, $m=1,2, \ldots$, and eigenfunctions $h_{m}(\theta)=\sin \frac{m \pi \theta}{L}$.

The 1st one-dimensional eigenvalue problem:

$$
r^{2} f^{\prime \prime}+r f^{\prime}+\left(\lambda r^{2}-\nu^{2}\right) f=0, \quad f(0)=f(R)=0
$$

Here $\nu^{2}=\mu_{m}$. We may assume that $\lambda>0$.
The general solution of the equation is
$f(r)=c_{1} J_{\nu}(\sqrt{\lambda} r)+c_{2} Y_{\nu}(\sqrt{\lambda} r)$, where c_{1}, c_{2} are constants.
Boundary condition $f(0)=0$ holds if $c_{2}=0$. Nonzero solution exists if $J_{\nu}(\sqrt{\lambda} R)=0$.

Thus there are infinitely many eigenvalues $\lambda_{m, 1}, \lambda_{m, 2}, \ldots$, where $\sqrt{\lambda_{m, n}} R=j_{\nu, n}$, i.e., $\lambda_{m, n}=\left(j_{\nu, n} / R\right)^{2}$. Associated eigenfunctions: $f_{m, n}(r)=J_{\nu}\left(j_{\nu, n} r / R\right)$. Note that $\nu=m \pi / L$.

Eigenvalue problem:

$\nabla^{2} \phi+\lambda \phi=0$ in $D=\{(r, \theta): r<R, 0<\theta<L\}$, $\left.\phi\right|_{\partial D}=0$.

Eigenvalues: $\quad \lambda_{m, n}=\left(j_{\frac{m \pi}{L}, n} / R\right)^{2}$, where $m=1,2, \ldots, n=1,2, \ldots$, and $\frac{j \frac{m \pi}{L}, n}{}$ is the nth positive zero of the Bessel function $J_{\frac{m \pi}{L}}$.
Eigenfunctions:
$\phi_{m, n}(r, \theta)=J_{\frac{m \pi}{L}}\left(j_{\frac{m \pi}{L}, n} \cdot r / R\right) \sin \frac{m \pi \theta}{L}$.

