MATH 311

Topics in Applied Mathematics

Lecture 25:

Bessel functions (continued).

Bessel's differential equation of order $m \ge 0$:

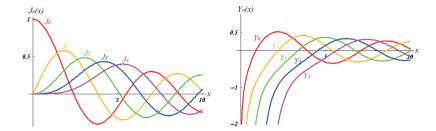
$$z^{2} \frac{d^{2} f}{dz^{2}} + z \frac{df}{dz} + (z^{2} - m^{2})f = 0$$

The equation is considered on the interval $(0, \infty)$. Solutions are called **Bessel functions** of order m.

 $J_m(z)$: Bessel function of the first kind, $Y_m(z)$: Bessel function of the second kind.

The general Bessel function of order m is $f(z) = c_1 J_m(z) + c_2 Y_m(z)$, where c_1, c_2 are constants.

Bessel functions of the 1st and 2nd kind



Asymptotics at the origin

 $J_m(z)$ is regular while $Y_m(z)$ has a singularity at 0.

As $z \rightarrow 0$, we have for any integer m > 0

$$J_m(z) \sim rac{1}{2^m \, m!} z^m, \quad Y_m(z) \sim -rac{2^m (m-1)!}{\pi} z^{-m}.$$

Also,
$$J_0(z) \sim 1$$
, $Y_0(z) \sim \frac{2}{\pi} \log z$.

To get the asymptotics for a noninteger m, we replace m! by $\Gamma(m+1)$ and (m-1)! by $\Gamma(m)$.

 $J_m(z)$ is uniquely determined by this asymptotics while $Y_m(z)$ is not.

Asymptotics at infinity

As $z \to \infty$, we have

$$J_m(z) = \sqrt{\frac{2}{\pi z}} \cos\left(z - \frac{\pi}{4} - \frac{m\pi}{2}\right) + O(z^{-1}),$$

 $Y_m(z) = \sqrt{\frac{2}{\pi z}} \sin\left(z - \frac{\pi}{4} - \frac{m\pi}{2}\right) + O(z^{-1}).$

Both $J_m(z)$ and $Y_m(z)$ are uniquely determined by this asymptotics.

For m = 1/2, these are exact formulas.

Original definition by Bessel (only for integer m):

$$J_m(z) = \frac{1}{\pi} \int_0^{\pi} \cos(z \sin \tau - m\tau) d\tau$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \cos(z \sin \tau) \cos(m\tau) d\tau + \frac{1}{\pi} \int_{0}^{\pi} \sin(z \sin \tau) \sin(m\tau) d\tau.$$

The first integral is 0 for any odd m while the second integral is 0 for any even m. It follows that

$$\cos(z\sin\tau) = J_0(z) + 2\sum_{n=1}^{\infty} J_{2n}(z)\cos(2n\tau),$$

$$\sin(z\sin\tau)=2\sum\nolimits_{n=1}^{\infty}J_{2n-1}(z)\sin((2n-1)\tau).$$

Zeros of Bessel functions

Let $0 < j_{m,1} < j_{m,2} < \dots$ be zeros of $J_m(z)$ and $0 < y_{m,1} < y_{m,2} < \dots$ be zeros of $Y_m(z)$.

Let $0 \le j'_{m,1} < j'_{m,2} < \dots$ be zeros of $J'_m(z)$ and $0 < y'_{m,1} < y'_{m,2} < \dots$ be zeros of $Y'_m(z)$.

(We let $j'_{0,1} = 0$ while $j'_{m,1} > 0$ if m > 0.)

Then the zeros are interlaced:

$$m \le j'_{m,1} < y_{m,1} < y'_{m,1} < j_{m,1} < < < < j'_{m,2} < y_{m,2} < y'_{m,2} < j_{m,2} < \dots$$

Asymptotics of the *n*th zeros as $n \to \infty$:

$$j'_{m,n}pprox y_{m,n}\sim (n+rac{1}{2}m-rac{3}{4})\pi, \ y'_{m,n}pprox j_{m,n}\sim (n+rac{1}{2}m-rac{1}{4})\pi.$$

Dirichlet Laplacian in a circle

Eigenvalue problem:

$$abla^2 \phi + \lambda \phi = 0$$
 in $D = \{(x, y) : x^2 + y^2 \le R^2\}$, $\phi|_{\partial D} = 0$.

Separation of variables in polar coordinates: $\phi(r,\theta) = f(r)h(\theta)$. Reduces the problem to two one-dimensional eigenvalue problems:

$$r^2f'' + rf' + (\lambda r^2 - \mu)f = 0, \quad f(R) = 0, |f(0)| < \infty;$$

 $h'' = -\mu h, \quad h(-\pi) = h(\pi), h'(-\pi) = h'(\pi).$

The latter problem has eigenvalues $\mu_m = m^2$, $m = 0, 1, 2, \ldots$, and eigenfunctions $h_0 = 1$, $h_m(\theta) = \cos m\theta$, $\tilde{h}_m(\theta) = \sin m\theta$, $m \ge 1$.

The 1st intermediate eigenvalue problem:

$$r^2f'' + rf' + (\lambda r^2 - m^2)f = 0$$
, $f(R) = 0$, $|f(0)| < \infty$.

New variable $z=\sqrt{\lambda}\cdot r$ reduces the equation to Bessel's equation of order m. Hence the general solution is $f(r)=c_1J_m(\sqrt{\lambda}\,r)+c_2Y_m(\sqrt{\lambda}\,r)$, where c_1,c_2 are constants.

Singular condition $|f(0)| < \infty$ holds if $c_2 = 0$. Nonzero solution exists if $J_m(\sqrt{\lambda} R) = 0$.

Thus there are infinitely many eigenvalues $\lambda_{m,1}, \lambda_{m,2}, \ldots$, where $\sqrt{\lambda_{m,n}} R = j_{m,n}$, i.e., $\lambda_{m,n} = (j_{m,n}/R)^2$.

Associated eigenfunctions: $f_{m,n}(r) = J_m(j_{m,n} r/R)$.

The eigenfunctions $f_{m,n}(r) = J_m(j_{m,n} r/R)$ are orthogonal relative to the inner product

$$\langle f,g\rangle_r = \int_0^R f(r)g(r) r dr.$$

Any piecewise continuous function g on [0, R] is expanded into a **Fourier-Bessel series**

$$g(r) = \sum_{n=1}^{\infty} c_n J_m \left(j_{m,n} \frac{r}{R} \right), \quad c_n = \frac{\langle g, f_{m,n} \rangle_r}{\langle f_{m,n}, f_{m,n} \rangle_r},$$

that converges in the mean (with weight r). If g is piecewise smooth, then the series converges at its points of continuity.

Eigenvalue problem:

$$abla^2 \phi + \lambda \phi = 0 \text{ in } D = \{(x, y) : x^2 + y^2 \le R^2\}, \\
\phi|_{\partial D} = 0.$$

Eigenvalues: $\lambda_{m,n} = (j_{m,n}/R)^2$, where m = 0, 1, 2, ..., n = 1, 2, ..., and $j_{m,n}$ is the *n*th positive zero of the Bessel function J_m .

Eigenfunctions:
$$\phi_{0,n}(r,\theta) = J_0(j_{0,n} r/R)$$
.

For $m \geq 1$, $\phi_{m,n}(r,\theta) = J_m(j_{m,n} r/R) \cos m\theta$ and $\tilde{\phi}_{m,n}(r,\theta) = J_m(j_{m,n} r/R) \sin m\theta$.

Neumann Laplacian in a circle

Eigenvalue problem:

$$abla^2 \phi + \lambda \phi = 0$$
 in $D = \{(x, y) : x^2 + y^2 \le R^2\}$, $\frac{\partial \phi}{\partial n} \Big|_{\partial D} = 0$.

Again, separation of variables in polar coordinates, $\phi(r,\theta) = f(r)h(\theta)$, reduces the problem to two one-dimensional eigenvalue problems:

$$r^2f'' + rf' + (\lambda r^2 - \mu)f = 0, \quad f'(R) = 0, |f(0)| < \infty;$$

 $h'' = -\mu h, \quad h(-\pi) = h(\pi), h'(-\pi) = h'(\pi).$

The 2nd problem has eigenvalues $\mu_m = m^2$, m = 0, 1, 2, ..., and eigenfunctions $h_0 = 1$, $h_m(\theta) = \cos m\theta$, $\tilde{h}_m(\theta) = \sin m\theta$, $m \ge 1$.

The 1st one-dimensional eigenvalue problem:

$$r^2f'' + rf' + (\lambda r^2 - m^2)f = 0$$
, $f'(R) = 0$, $|f(0)| < \infty$.

For $\lambda > 0$, the general solution of the equation is $f(r) = c_1 J_m(\sqrt{\lambda} r) + c_2 Y_m(\sqrt{\lambda} r)$, where c_1, c_2 are constants.

Singular condition $|f(0)| < \infty$ holds if $c_2 = 0$. Nonzero solution exists if $J'_m(\sqrt{\lambda} R) = 0$.

Thus there are infinitely many eigenvalues $\lambda_{m,1}, \lambda_{m,2}, \ldots$, where $\sqrt{\lambda_{m,n}} R = j'_{m,n}$, i.e., $\lambda_{m,n} = (j'_{m,n}/R)^2$.

Associated eigenfunctions: $f_{m,n}(r) = J_m(j'_{m,n} r/R)$.

 $\lambda = 0$ is an eigenvalue only for m = 0.

Eigenvalue problem:

$$abla^2 \phi + \lambda \phi = 0$$
 in $D = \{(x, y) : x^2 + y^2 \le R^2\}$, $\frac{\partial \phi}{\partial \mathbf{r}} \Big|_{\partial \mathbf{r}} = 0$.

Eigenvalues: $\lambda_{m,n} = (j'_{m,n}/R)^2$, where $m = 0, 1, 2, \ldots, n = 1, 2, \ldots$, and $j'_{m,n}$ is the *n*th positive zero of J'_m (exception: $j'_{0,1} = 0$).

Eigenfunctions: $\phi_{0,n}(r,\theta) = J_0(j'_{0,n} r/R)$. In particular, $\phi_{0,1} = 1$.

For $m \ge 1$, $\phi_{m,n}(r,\theta) = J_m(j'_{m,n}r/R) \cos m\theta$ and $\tilde{\phi}_{m,n}(r,\theta) = J_m(j'_{m,n}r/R) \sin m\theta$.

Laplacian in a circular sector

Eigenvalue problem:

$$\nabla^2 \phi + \lambda \phi = 0 \text{ in } D = \{(r, \theta) : r < R, \ 0 < \theta < L\},$$

$$\phi|_{\partial D} = 0.$$

Again, separation of variables in polar coordinates, $\phi(r,\theta) = f(r)h(\theta)$, reduces the problem to two one-dimensional eigenvalue problems:

$$r^2f'' + rf' + (\lambda r^2 - \mu)f = 0, \quad f(0) = f(R) = 0;$$

 $h'' = -\mu h, \quad h(0) = h(L) = 0.$

The 2nd problem has eigenvalues $\mu_m = (\frac{m\pi}{L})^2$, m = 1, 2, ..., and eigenfunctions $h_m(\theta) = \sin \frac{m\pi\theta}{L}$.

The 1st one-dimensional eigenvalue problem:

$$r^2f'' + rf' + (\lambda r^2 - \nu^2)f = 0$$
, $f(0) = f(R) = 0$.

Here $\nu^2 = \mu_m$. We may assume that $\lambda > 0$.

The general solution of the equation is $f(r) = c_1 J_{\nu}(\sqrt{\lambda} r) + c_2 Y_{\nu}(\sqrt{\lambda} r)$, where c_1, c_2 are constants.

Boundary condition f(0) = 0 holds if $c_2 = 0$. Nonzero solution exists if $J_{\nu}(\sqrt{\lambda} R) = 0$.

Thus there are infinitely many eigenvalues $\lambda_{m,1}, \lambda_{m,2}, \ldots$, where $\sqrt{\lambda_{m,n}} R = j_{\nu,n}$, i.e., $\lambda_{m,n} = (j_{\nu,n}/R)^2$. Associated eigenfunctions: $f_{m,n}(r) = J_{\nu}(j_{\nu,n} r/R)$.

Note that $\nu = m\pi/L$.

Eigenvalue problem:

$$abla^2 \phi + \lambda \phi = 0$$
 in $D = \{(r, \theta) : r < R, \ 0 < \theta < L\},$
 $\phi|_{\partial D} = 0.$

Eigenvalues: $\lambda_{m,n} = (j_{\frac{m\pi}{L},n}/R)^2$, where m = 1, 2, ..., n = 1, 2, ..., and $j_{\frac{m\pi}{L},n}$ is the *n*th positive zero of the Bessel function $J_{\frac{m\pi}{L}}$.

Eigenfunctions:

$$\phi_{m,n}(r,\theta) = J_{\frac{m\pi}{L}}(j_{\frac{m\pi}{L},n} \cdot r/R) \sin \frac{m\pi\theta}{L}.$$