MATH 311 Topics in Applied Mathematics Lecture 26: Review for the final exam.

Topics for the final exam: Part I

Elementary linear algebra (Leon 1.1–1.4, 2.1–2.2)

• Systems of linear equations: elementary operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for the final exam: Part II

Abstract linear algebra (Leon 3.1–3.6, 4.1–4.3)

• Vector spaces (vectors, matrices, polynomials, functional spaces).

• Subspaces. Nullspace, column space, and row space of a matrix.

- Span, spanning set. Linear independence.
- Bases and dimension.
- Rank and nullity of a matrix.
- Coordinates relative to a basis.
- Change of basis, transition matrix.
- Linear transformations.
- Matrix transformations.
- Matrix of a linear mapping.

Topics for the final exam: Part III

Advanced linear algebra (Leon 5.1–5.6, 6.1, 6.3)

- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Diagonalization
- Inner products and norms
- Orthogonal complement
- Least squares problems
- The Gram-Schmidt orthogonalization process

Topics for the final exam: Part IV

Applied linear algebra (Spiegel, Ch. 1, 2, 6)

- Boundary value problems
- Separation of variables
- Heat equation
- Fourier series
- Bessel functions

Problem Let V be the vector space spanned by functions $f_1(x) = x \sin x$, $f_2(x) = x \cos x$, $f_3(x) = \sin x$, and $f_4(x) = \cos x$. Consider the linear operator $D: V \to V$, D = d/dx.

(a) Find the matrix A of the operator D relative to the basis f_1, f_2, f_3, f_4 .

(b) Find the eigenvalues of A.

(c) Is the matrix A diagonalizable in \mathbb{R}^4 (in \mathbb{C}^4)?

A is a 4×4 matrix whose columns are coordinates of
functions
$$Df_i = f'_i$$
 relative to the basis f_1, f_2, f_3, f_4 .
 $f'_1(x) = (x \sin x)' = x \cos x + \sin x = f_2(x) + f_3(x),$
 $f'_2(x) = (x \cos x)' = -x \sin x + \cos x$
 $= -f_1(x) + f_4(x),$
 $f'_3(x) = (\sin x)' = \cos x = f_4(x),$
 $f'_4(x) = (\cos x)' = -\sin x = -f_3(x).$
Thus $A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$

Eigenvalues of A are roots of its characteristic polynomial

$$\det(A-\lambda I) = egin{bmatrix} -\lambda & -1 & 0 & 0 \ 1 & -\lambda & 0 & 0 \ 1 & 0 & -\lambda & -1 \ 0 & 1 & 1 & -\lambda \ \end{bmatrix}$$

Expand the determinant by the 1st row:

$$\det(A - \lambda I) = -\lambda \begin{vmatrix} -\lambda & 0 & 0 \\ 0 & -\lambda & -1 \\ 1 & 1 & -\lambda \end{vmatrix} - (-1) \begin{vmatrix} 1 & 0 & 0 \\ 1 & -\lambda & -1 \\ 0 & 1 & -\lambda \end{vmatrix}$$

$$=\lambda^2(\lambda^2+1)+(\lambda^2+1)=(\lambda^2+1)^2.$$

The eigenvalues are *i* and -i, both of multiplicity 2.

Complex eigenvalues \implies A is not diagonalizable in \mathbb{R}^4 If A is diagonalizable in \mathbb{C}^4 then $A = UXU^{-1}$, where U is an invertible matrix with complex entries and

$$X = \begin{pmatrix} i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \end{pmatrix}$$

This would imply that $A^2 = UX^2U^{-1}$. But $X^2 = -I$ so that $A^2 = U(-I)U^{-1} = -I$.

$$A^{2} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix}^{2} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -2 & -1 & 0 \\ 2 & 0 & 0 & -1 \end{pmatrix}.$$

Since $A^2 \neq -I$, the matrix A is not diagonalizable in \mathbb{C}^4 .

Problem Consider a linear operator $L : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v}$, where $\mathbf{v}_0 = (3/5, 0, -4/5)$.

(a) Find the matrix B of the operator L.

(b) Find the range and kernel of L.

(c) Find the eigenvalues of L.

(d) Find the matrix of the operator L^{311} (*L* applied 311 times).

$$L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v}, \quad \mathbf{v}_0 = (3/5, 0, -4/5).$$
Let $\mathbf{v} = (x, y, z) = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3.$ Then
$$L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ 3/5 & 0 & -4/5 \\ x & y & z \end{vmatrix}$$

$$= \frac{4}{5}y\mathbf{e}_1 - \left(\frac{4}{5}x + \frac{3}{5}z\right)\mathbf{e}_2 + \frac{3}{5}y\mathbf{e}_3.$$
In particular, $L(\mathbf{e}_1) = -\frac{4}{5}\mathbf{e}_2, \quad L(\mathbf{e}_2) = \frac{4}{5}\mathbf{e}_1 + \frac{3}{5}\mathbf{e}_3,$

$$L(\mathbf{e}_3) = -\frac{3}{5}\mathbf{e}_2.$$
Therefore $B = \begin{pmatrix} 0 & 4/5 & 0 \\ -4/5 & 0 & -3/5 \\ 0 & 3/5 & 0 \end{pmatrix}.$

$$B = egin{pmatrix} 0 & 4/5 & 0 \ -4/5 & 0 & -3/5 \ 0 & 3/5 & 0 \end{pmatrix}.$$

The range of the operator *L* is spanned by columns of the matrix *B*. It follows that Range(L) is the plane spanned by $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (4, 0, 3)$.

The kernel of *L* is the nullspace of the matrix *B*, i.e., the solution set for the equation $B\mathbf{x} = \mathbf{0}$.

$$\begin{pmatrix} 0 & 4/5 & 0 \\ -4/5 & 0 & -3/5 \\ 0 & 3/5 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3/4 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\implies x + \frac{3}{4}z = y = 0 \implies \mathbf{x} = t(-3/4, 0, 1).$$

Alternatively, the kernel of *L* is the set of vectors $\mathbf{v} \in \mathbb{R}^3$ such that $L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v} = \mathbf{0}$. It follows that this is the line spanned by $\mathbf{v}_0 = (3/5, 0, -4/5)$.

Characteristic polynomial of the matrix *B*:

$$\det(B-\lambda I)=egin{bmatrix} -\lambda & 4/5 & 0\ -4/5 & -\lambda & -3/5\ 0 & 3/5 & -\lambda \end{bmatrix}$$
= $-\lambda^3-(3/5)^2\lambda-(4/5)^2\lambda=-\lambda^3-\lambda=-\lambda(\lambda^2+1).$

The eigenvalues are 0, i, and -i.

The matrix of the operator L^{311} is B^{311} .

Since the matrix B has eigenvalues 0, i, and -i, it is diagonalizable in \mathbb{C}^3 . Namely, $B = UDU^{-1}$, where U is an invertible matrix with complex entries and

$$D = egin{pmatrix} 0 & 0 & 0 \ 0 & i & 0 \ 0 & 0 & -i \end{pmatrix}.$$

Then $B^{311} = UD^{311}U^{-1}$. We have that $D^{311} =$ = diag $(0, i^{311}, (-i)^{311}) =$ diag(0, -i, i) = -D. Hence

$$B^{311} = U(-D)U^{-1} = -B = \begin{pmatrix} 0 & -4/5 & 0 \\ 4/5 & 0 & 3/5 \\ 0 & -3/5 & 0 \end{pmatrix}$$

Problem. Find a quadratic polynomial that is the best least squares fit to the function f(x) = |x| on the interval [-1, 1].

The best least squares fit is a polynomial q(x) that minimizes the distance relative to the integral norm

$$\|f-q\| = \left(\int_{-1}^{1} |f(x)-q(x)|^2 dx\right)^{1/2}$$

over all polynomials of degree 2.

The norm $\|\cdot\|$ is induced by the inner product

$$\langle g,h\rangle = \int_{-1}^{1} g(x)h(x)\,dx.$$

Therefore ||f - p|| is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of quadratic polynomials.

Suppose that p_0, p_1, p_2 is an orthogonal basis for \mathcal{P}_3 . Then

$$q(x)=rac{\langle f,p_0
angle}{\langle p_0,p_0
angle}p_0(x)+rac{\langle f,p_1
angle}{\langle p_1,p_1
angle}p_1(x)+rac{\langle f,p_2
angle}{\langle p_2,p_2
angle}p_2(x).$$

An orthogonal basis can be obtained by applying the *Gram-Schmidt orthogonalization process* to the basis $1, x, x^2$:

 $p_0(x) = 1$. $p_1(x) = x - \frac{\langle x, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x) = x - \frac{\langle x, 1 \rangle}{\langle 1, 1 \rangle} = x,$ $p_2(x) = x^2 - \frac{\langle x^2, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x) - \frac{\langle x^2, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1(x)$ $= x^2 - \frac{\langle x^2, 1 \rangle}{\langle 1, 1 \rangle} - \frac{\langle x^2, x \rangle}{\langle x, x \rangle} x = x^2 - \frac{1}{2}.$

Problem. Find a quadratic polynomial that is the best least squares fit to the function f(x) = |x| on the interval [-1, 1].

Solution:

$$egin{aligned} q(x) &= rac{\langle f, p_0
angle}{\langle p_0, p_0
angle} p_0(x) + rac{\langle f, p_1
angle}{\langle p_1, p_1
angle} p_1(x) + rac{\langle f, p_2
angle}{\langle p_2, p_2
angle} p_2(x) \ &= rac{1}{2} p_0(x) + rac{15}{16} p_2(x) \ &= rac{1}{2} + rac{15}{16} \Big(x^2 - rac{1}{3} \Big) = rac{3}{16} (5x^2 + 1). \end{aligned}$$

