Sample problems for the final exam

Any problem may be altered or replaced by a different one!

Problem 1 Find the point of intersection of the planes x + 2y - z = 1, x - 3y = -5, and 2x + y + z = 0 in \mathbb{R}^3 .

Problem 2 Consider a linear operator $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$L(\mathbf{v}) = (\mathbf{v} \cdot \mathbf{v}_1)\mathbf{v}_2$$
, where $\mathbf{v}_1 = (1, 1, 1), \ \mathbf{v}_2 = (1, 2, 2).$

- (i) Find the matrix of the operator L.
- (ii) Find the dimensions of the range and the kernel of L.
- (iii) Find bases for the range and the kernel of L.

Problem 3 Let $\mathbf{v}_1 = (1,1,1)$, $\mathbf{v}_2 = (1,1,0)$, and $\mathbf{v}_3 = (1,0,1)$. Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator on \mathbb{R}^3 such that $L(\mathbf{v}_1) = \mathbf{v}_2$, $L(\mathbf{v}_2) = \mathbf{v}_3$, $L(\mathbf{v}_3) = \mathbf{v}_1$.

- (i) Show that the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ form a basis for \mathbb{R}^3 .
- (ii) Find the matrix of the operator L relative to the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.
- (iii) Find the matrix of the operator L relative to the standard basis.

Problem 4 Let
$$B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

- (i) Find all eigenvalues of the matrix B.
- (ii) Find a basis for \mathbb{R}^3 consisting of eigenvectors of B.
- (iii) Find an orthonormal basis for \mathbb{R}^3 consisting of eigenvectors of B.
- (iv) Find a diagonal matrix D and an invertible matrix U such that $B = UDU^{-1}$.

Problem 5 Let V be a subspace of \mathbb{R}^4 spanned by vectors $\mathbf{x}_1 = (1, 1, 0, 0), \mathbf{x}_2 = (2, 0, -1, 1),$ and $\mathbf{x}_3 = (0, 1, 1, 0).$

- (i) Find the distance from the point $\mathbf{y} = (0, 0, 0, 4)$ to the subspace V.
- (ii) Find the distance from the point \mathbf{y} to the orthogonal complement V^{\perp} .

Problem 6 Consider a vector field $\mathbf{F}(x, y, z) = xyz\mathbf{e}_1 + xy\mathbf{e}_2 + x^2\mathbf{e}_3$.

- (i) Find $\operatorname{curl}(\mathbf{F})$.
- (ii) Find the integral of the vector field $\operatorname{curl}(\mathbf{F})$ along a hemisphere $H=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2=1,\ z\geq 0\}$. Orient the hemisphere by the normal vector $\mathbf{n}=(0,0,1)$ at the point (0,0,1).

Problem 7 Find the area of a pentagon with vertices (0,0), (4,0), (5,2), (3,4), and (-1,2).