Topics in Applied Mathematics I

MATH 311

Lecture 6: Inverse matrix.

Identity matrix

Definition. The **identity matrix** (or **unit matrix**) is a diagonal matrix with all diagonal entries equal to 1. The $n \times n$ identity matrix is denoted I_n or simply I.

$$I_1=(1), \quad I_2=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}, \quad I_3=egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

In general,
$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & 1 \end{pmatrix}$$
.

Theorem. Let A be an arbitrary $m \times n$ matrix. Then $I_m A = AI_n = A$.

Inverse matrix

Let $\mathcal{M}_n(\mathbb{R})$ denote the set of all $n \times n$ matrices with real entries. We can **add**, **subtract**, and **multiply** elements of $\mathcal{M}_n(\mathbb{R})$. What about **division**?

Definition. Let $A \in \mathcal{M}_n(\mathbb{R})$. Suppose there exists an $n \times n$ matrix B such that

$$AB = BA = I_n$$
.

Then the matrix A is called **invertible** and B is called the **inverse** of A (denoted A^{-1}).

A non-invertible square matrix is called **singular**.

$$AA^{-1} = A^{-1}A = I$$

Examples

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

$$BA = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$C^2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Thus $A^{-1} = B$, $B^{-1} = A$, and $C^{-1} = C$.

 $AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$

Basic properties of inverse matrices

- If $B = A^{-1}$ then $A = B^{-1}$. In other words, if A is invertible, so is A^{-1} , and $A = (A^{-1})^{-1}$.
- The inverse matrix (if it exists) is unique. Moreover, if AB = CA = I for some $n \times n$ matrices B and C, then $B = C = A^{-1}$.

Indeed,
$$B = IB = (CA)B = C(AB) = CI = C$$
.

• If $n \times n$ matrices A and B are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I,$$

 $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I.$

• Similarly, $(A_1A_2...A_k)^{-1} = A_k^{-1}...A_2^{-1}A_1^{-1}$.

Inverting diagonal matrices

Theorem A diagonal matrix $D = \operatorname{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$.

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \dots, d_n^{-1})$.

$$egin{pmatrix} d_1 & 0 & \dots & 0 \ 0 & d_2 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & d_n \end{pmatrix}^{-1} = egin{pmatrix} d_1^{-1} & 0 & \dots & 0 \ 0 & d_2^{-1} & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & d_n^{-1} \end{pmatrix}$$

Inverting diagonal matrices

Theorem A diagonal matrix $D = \operatorname{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$.

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \dots, d_n^{-1})$.

Proof: If all $d_i \neq 0$ then, clearly, $\operatorname{diag}(d_1, \ldots, d_n) \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}) = \operatorname{diag}(1, \ldots, 1) = I$, $\operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}) \operatorname{diag}(d_1, \ldots, d_n) = \operatorname{diag}(1, \ldots, 1) = I$.

Now suppose that $d_i = 0$ for some i. Then for any $n \times n$ matrix B the ith row of the matrix DB is a zero row. Hence $DB \neq I$.

Inverting 2×2 matrices

Definition. The **determinant** of a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\det A = ad - bc$.

Theorem A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if det $A \neq 0$.

If $\det A \neq 0$ then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Theorem A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if

and only if
$$\det A \neq 0$$
. If $\det A \neq 0$ then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Proof: Let
$$B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
. Then
$$AB = BA = \begin{pmatrix} ad-bc & 0 \\ 0 & ad-bc \end{pmatrix} = (ad-bc)I_2.$$

In the case $\det A \neq 0$, we have $A^{-1} = (\det A)^{-1}B$. In the case $\det A = 0$, the matrix A is not invertible as otherwise $AB = O \implies A^{-1}(AB) = A^{-1}O = O$ $\implies (A^{-1}A)B = O \implies I_2B = O \implies B = O$ $\implies A = O$, but the zero matrix is singular. **Problem.** Solve a system $\begin{cases} 4x + 3y = 5, \\ 3x + 2y = -1 \end{cases}$

$$\begin{cases} 4x + 3y = 5, \\ 3x + 2y = -1 \end{cases}$$

This system is equivalent to a matrix equation $A\mathbf{x} = \mathbf{b}$,

where
$$A = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$.

We have det $A = -1 \neq 0$. Hence A is invertible.

$$A\mathbf{x} = \mathbf{b} \implies A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b} \implies (A^{-1}A)\mathbf{x} = A^{-1}\mathbf{b}$$

 $\implies \mathbf{x} = A^{-1}\mathbf{b}$

Conversely, $\mathbf{x} = A^{-1}\mathbf{b} \implies A\mathbf{x} = A(A^{-1}\mathbf{b}) = (AA^{-1})\mathbf{b} = \mathbf{b}$.

Conversely,
$$\mathbf{x} = A^{-1}\mathbf{b} \implies A\mathbf{x} = A(A^{-1}\mathbf{b}) = (AA^{-1})\mathbf{b} = \mathbf{b}$$
.

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \frac{1}{-1} \begin{pmatrix} 2 & -3 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \begin{pmatrix} -13 \\ 19 \end{pmatrix}$$

System of n linear equations in n variables:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases} \iff A\mathbf{x} = \mathbf{b},$$

where

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

Theorem If the matrix A is invertible then the system has a unique solution, which is $\mathbf{x} = A^{-1}\mathbf{b}$.

General results on inverse matrices

Theorem 1 Given an $n \times n$ matrix A, the following conditions are equivalent:

- (i) A is invertible;
- (ii) $\mathbf{x} = \mathbf{0}$ is the only solution of the matrix equation $A\mathbf{x} = \mathbf{0}$;
- (iii) the matrix equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for any *n*-dimensional column vector \mathbf{b} ;
 - (iv) the row echelon form of A has no zero rows;
 - (\mathbf{v}) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1} .

Row echelon form of a square matrix:



invertible case

noninvertible case