MATH 311

Topics in Applied Mathematics I

Lecture 7:
Inverse matrix (continued).
Transpose of a matrix.

Inverse matrix

Definition. Let A be an $n \times n$ matrix. The inverse of A is an $n \times n$ matrix, denoted A^{-1}, such that

$$
A A^{-1}=A^{-1} A=I
$$

If A^{-1} exists then the matrix A is called invertible. Otherwise A is called singular.

System of n linear equations in n variables:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array} \Longleftrightarrow A \mathbf{x}=\mathbf{b}\right.
$$

where
$A=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right)$.
Theorem If the matrix A is invertible then the system has a unique solution, which is $\mathbf{x}=A^{-1} \mathbf{b}$.

General results on inverse matrices

Theorem 1 Given an $n \times n$ matrix A, the following conditions are equivalent:
(i) A is invertible;
(ii) $\mathbf{x}=\mathbf{0}$ is the only solution of the matrix equation $A \mathbf{x}=\mathbf{0}$;
(iii) the matrix equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for any n-dimensional column vector \mathbf{b};
(iv) the row echelon form of A has no zero rows;
(v) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1}.

Row echelon form of a square matrix:

invertible case

noninvertible case

For any matrix in row echelon form, the number of columns with leading entries equals the number of rows with leading entries. For a square matrix, also the number of columns without leading entries (i.e., the number of free variables in a related system of linear equations) equals the number of rows without leading entries (i.e., zero rows).

Row echelon form of a square matrix:

invertible case

noninvertible case

Hence the row echelon form of a square matrix A is either strict triangular or else it has a zero row. In the former case, the equation $A \mathbf{x}=\mathbf{b}$ always has a unique solution. In the latter case, $A \mathbf{x}=\mathbf{b}$ never has a unique solution. Also, in the former case the reduced row echelon form of A is I.

Example. $A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right)$.
To check whether A is invertible, we convert it to row echelon form.
Interchange the 1st row with the 2 nd row:
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0\end{array}\right)$
Add -3 times the 1st row to the 2 nd row:
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 0 & -2 & -3 \\ -2 & 3 & 0\end{array}\right)$

$$
\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & -2 & -3 \\
-2 & 3 & 0
\end{array}\right)
$$

Add 2 times the 1st row to the 3 rd row:
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 0 & -2 & -3 \\ 0 & 3 & 2\end{array}\right)$
Multiply the 2 nd row by -0.5 :
$\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 3 & 2\end{array}\right)$
$\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 3 & 2\end{array}\right)$
Add -3 times the 2 nd row to the 3rd row:
$\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & -2.5\end{array}\right)$
Multiply the 3 rd row by -0.4 :
$\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & 1\end{array}\right)$
$\left(\begin{array}{ccc}\boxed{1} & 0 & 1 \\ 0 & \boxed{1} & 1.5 \\ 0 & 0 & \boxed{1}\end{array}\right)$
We already know that the matrix A is invertible.
Let's proceed towards reduced row echelon form.
Add -1.5 times the 3 rd row to the 2 nd row:
$\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Add -1 times the 3 rd row to the 1 st row:
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

To obtain A^{-1}, we need to apply the following sequence of elementary row operations to the identity matrix:

- interchange the 1 st row with the 2 nd row,
- add -3 times the 1 st row to the 2 nd row,
- add 2 times the 1 st row to the 3 rd row,
- multiply the 2 nd row by -0.5 ,
- add -3 times the 2 nd row to the 3 rd row,
- multiply the 3 rd row by -0.4 ,
- add -1.5 times the 3 rd row to the 2 nd row,
- add -1 times the 3 rd row to the 1 st row.

A convenient way to compute the inverse matrix A^{-1} is to merge the matrices A and I into one 3×6 matrix $(A \mid I)$, and apply elementary row operations to this new matrix.
$A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right), \quad I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$(A \mid I)=\left(\begin{array}{rrr|rrr}3 & -2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1\end{array}\right)$

$$
\left(\begin{array}{rrr|rrr}
3 & -2 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Interchange the 1st row with the 2 nd row:

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
3 & -2 & 0 & 1 & 0 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Add -3 times the 1 st row to the 2 nd row:

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & -2 & -3 & 1 & -3 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & -2 & -3 & 1 & -3 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Add 2 times the 1 st row to the 3 rd row:

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & -2 & -3 & 1 & -3 & 0 \\
0 & 3 & 2 & 0 & 2 & 1
\end{array}\right)
$$

Multiply the 2nd row by -0.5 :
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 3 & 2 & 0 & 2 & 1\end{array}\right)$
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 3 & 2 & 0 & 2 & 1\end{array}\right)$
Add -3 times the 2 nd row to the 3rd row:
$\left(\begin{array}{rrr|rrr}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & -2.5 & 1.5 & -2.5 & 1\end{array}\right)$
Multiply the 3rd row by -0.4 :
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$
Add -1.5 times the 3 rd row to the 2 nd row:
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$
Add -1 times the 3 rd row to the 1 st row:
$\left(\begin{array}{lll|rrr}1 & 0 & 0 & 0.6 & 0 & 0.4 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)=\left(I \mid A^{-1}\right)$

Thus

$$
\left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right) .
$$

That is,

$$
\begin{aligned}
& \left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)\left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& \left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right)\left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Why does it work?

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{rrr}
a_{1} & a_{2} & a_{3} \\
2 b_{1} & 2 b_{2} & 2 b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right), \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1}+3 a_{1} & b_{2}+3 a_{2} & b_{3}+3 a_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right), \\
\\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right) .
\end{gathered}
$$

Proposition Any elementary row operation can be simulated as left multiplication by a certain matrix.

Elementary matrices

$$
E=\left(\begin{array}{lllllll}
1 & & & & & & \\
& \ddots & & & & O & \\
& & 1 & & & & \\
& & & r & & & \\
& 0 & & & 1 & & \\
& & & & & 1
\end{array}\right) \text { row \#i }
$$

To obtain the matrix $E A$ from A, multiply the i th row by r. To obtain the matrix $A E$ from A, multiply the i th column by r.

Elementary matrices

$$
E=\left(\begin{array}{cccccc}
1 & & & & & \\
\vdots & \ddots & & & & O \\
0 & \cdots & 1 & & & \\
\vdots & & \vdots & \ddots & & \\
0 & \cdots & r & \cdots & 1 &
\end{array} \quad \text { row } \# i\right.
$$

To obtain the matrix $E A$ from A, add r times the i th row to the j th row. To obtain the matrix $A E$ from A, add r times the j th column to the i th column.

Elementary matrices

$$
E=\left(\begin{array}{ccccccc}
1 & & & & & 0 & \\
& \ddots & & & & & \\
& & 0 & \cdots & 1 & & \\
& & \vdots & \ddots & \vdots & & \\
& & 1 & \cdots & 0 & & \\
& 0 & & & & \ddots & \\
& & & & & 1
\end{array}\right) \quad \text { row } \# i
$$

To obtain the matrix $E A$ from A, interchange the i th row with the j th row. To obtain $A E$ from A, interchange the i th column with the j th column.

Why does it work? (continued)

Assume that a square matrix A can be converted to the identity matrix by a sequence of elementary row operations. Then $E_{k} E_{k-1} \ldots E_{2} E_{1} A=I$, where $E_{1}, E_{2}, \ldots, E_{k}$ are elementary matrices simulating those operations.

Applying the same sequence of operations to the identity matrix, we obtain the matrix

$$
B=E_{k} E_{k-1} \ldots E_{2} E_{1} I=E_{k} E_{k-1} \ldots E_{2} E_{1} .
$$

Thus $B A=I$. Besides, B is invertible since elementary matrices are invertible (why?). It follows that $A=B^{-1}$, then $B=A^{-1}$.

Transpose of a matrix

Definition. Given a matrix A, the transpose of A, denoted A^{T}, is the matrix whose rows are columns of A (and whose columns are rows of A). That is, if $A=\left(a_{i j}\right)$ then $A^{T}=\left(b_{i j}\right)$, where $b_{i j}=a_{j i}$.

Examples. $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)^{T}=\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$,
$\left(\begin{array}{l}7 \\ 8 \\ 9\end{array}\right)^{T}=(7,8,9), \quad\left(\begin{array}{ll}4 & 7 \\ 7 & 0\end{array}\right)^{T}=\left(\begin{array}{ll}4 & 7 \\ 7 & 0\end{array}\right)$.

Properties of transposes:

- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(r A)^{T}=r A^{T}$
- $(A B)^{T}=B^{T} A^{T}$
- $\left(A_{1} A_{2} \ldots A_{k}\right)^{T}=A_{k}^{T} \ldots A_{2}^{T} A_{1}^{T}$
- $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$

Definition. A square matrix A is said to be symmetric if $A^{T}=A$.
For example, any diagonal matrix is symmetric.
Proposition For any square matrix A the matrices $B=A A^{T}$ and $C=A+A^{T}$ are symmetric.

Proof:

$$
\begin{gathered}
B^{T}=\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}=B \\
C^{T}=\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A=C
\end{gathered}
$$

