MATH 311
 Topics in Applied Mathematics I

 Lecture 12:Span. Spanning set.

Subspaces of vector spaces

Definition. A vector space V_{0} is a subspace of a vector space V if $V_{0} \subset V$ and the linear operations on V_{0} agree with the linear operations on V.

Proposition A subset S of a vector space V is a subspace of V if and only if S is nonempty and closed under linear operations, i.e.,

$$
\begin{gathered}
\mathbf{x}, \mathbf{y} \in S \Longrightarrow \mathbf{x}+\mathbf{y} \in S \\
\mathbf{x} \in S \Longrightarrow r \mathbf{x} \in S \text { for all } r \in \mathbb{R}
\end{gathered}
$$

Remarks. The zero vector in a subspace is the same as the zero vector in V. Also, the subtraction in a subspace agrees with that in V.

Examples of subspaces

- $F(\mathbb{R})$: all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
$C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
- \mathcal{P} : polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$
- \mathcal{P}_{n} : polynomials of degree less than n \mathcal{P}_{n} is a subspace of \mathcal{P}.
- Any vector space V
- $\{\mathbf{0}\}$, where $\mathbf{0}$ is the zero vector in V

The trivial space $\{\mathbf{0}\}$ is a subspace of V.

Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in V$.
Consider the set L of all linear combinations
$r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{R}$.
Theorem L is a subspace of V.
Proof: First of all, L is not empty. For example, $\mathbf{0}=0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+\cdots+0 \mathbf{v}_{n}$ belongs to L.
The set L is closed under addition since

$$
\begin{aligned}
& \left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}\right)+\left(s_{1} \mathbf{v}_{1}+s_{2} \mathbf{v}_{2}+\cdots+s_{n} \mathbf{v}_{n}\right)= \\
& \quad=\left(r_{1}+s_{1}\right) \mathbf{v}_{1}+\left(r_{2}+s_{2}\right) \mathbf{v}_{2}+\cdots+\left(r_{n}+s_{n}\right) \mathbf{v}_{n} .
\end{aligned}
$$

The set L is closed under scalar multiplication since

$$
t\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}\right)=\left(t r_{1}\right) \mathbf{v}_{1}+\left(t r_{2}\right) \mathbf{v}_{2}+\cdots+\left(t r_{n}\right) \mathbf{v}_{n}
$$

Thus L is a subspace of V.

Span: implicit definition

Let S be a subset of a vector space V.
Definition. The span of the set S, denoted $\operatorname{Span}(S)$, is the smallest subspace of V that contains S. That is,

- $\operatorname{Span}(S)$ is a subspace of V;
- for any subspace $W \subset V$ one has

$$
S \subset W \quad \Longrightarrow \quad \operatorname{span}(S) \subset W
$$

Remark. The span of any set $S \subset V$ is well defined (namely, it is the intersection of all subspaces of V that contain S).

Span: effective description

Let S be a subset of a vector space V.

- If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ then $\operatorname{Span}(S)$ is the set of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{R}$.
- If S is an infinite set then $\operatorname{Span}(S)$ is the set of all linear combinations $r_{1} \mathbf{u}_{1}+r_{2} \mathbf{u}_{2}+\cdots+r_{k} \mathbf{u}_{k}$, where $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k} \in S$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$ $(k \geq 1)$.
- If S is the empty set then $\operatorname{Span}(S)=\{\mathbf{0}\}$.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$:

- The span of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ consists of all matrices of the form

$$
a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) .
$$

This is the subspace of diagonal matrices.

- The span of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
consists of all matrices of the form

$$
a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)+c\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right) .
$$

This is the subspace of symmetric matrices.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$:

- The span of $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ is the subspace of anti-symmetric matrices.
- The span of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, and $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
is the subspace of upper triangular matrices.
- The span of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
is the entire space $\mathcal{M}_{2,2}(\mathbb{R})$.

Spanning set

Definition. A subset S of a vector space V is called a spanning set for V if $\operatorname{Span}(S)=V$.

Examples.

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ form a spanning set for \mathbb{R}^{3} as

$$
(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3} .
$$

- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
form a spanning set for $\mathcal{M}_{2,2}(\mathbb{R})$ as

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Problem Let $\mathbf{v}_{1}=(1,2,0), \mathbf{v}_{2}=(3,1,1)$, and $\mathbf{w}=(4,-7,3)$. Determine whether \mathbf{w} belongs to $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

We have to check if there exist $r_{1}, r_{2} \in \mathbb{R}$ such that $\mathbf{w}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}$. This vector equation is equivalent to a system of linear equations:
$\left\{\begin{aligned} 4 & =r_{1}+3 r_{2} \\ -7 & =2 r_{1}+r_{2} \\ 3 & =0 r_{1}+r_{2}\end{aligned} \Longleftrightarrow\left\{\begin{array}{l}r_{1}=-5 \\ r_{2}=3\end{array}\right.\right.$
Thus $\mathbf{w}=-5 \mathbf{v}_{1}+3 \mathbf{v}_{2}$ is in $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

Problem Let $\mathbf{v}_{1}=(2,5)$ and $\mathbf{v}_{2}=(1,3)$. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a spanning set for \mathbb{R}^{2}.

Take any vector $\mathbf{w}=(a, b) \in \mathbb{R}^{2}$. We have to check that there exist $r_{1}, r_{2} \in \mathbb{R}$ such that

$$
\mathbf{w}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array}{l}
2 r_{1}+r_{2}=a \\
5 r_{1}+3 r_{2}=b
\end{array}\right.
$$

Coefficient matrix: $C=\left(\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right) . \operatorname{det} C=1 \neq 0$.
Since the matrix C is invertible, the system has a unique solution for any a and b.
Thus $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\mathbb{R}^{2}$.

Problem Let $\mathbf{v}_{1}=(2,5)$ and $\mathbf{v}_{2}=(1,3)$. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a spanning set for \mathbb{R}^{2}.

Alternative solution: First let us show that vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ belong to $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

$$
\begin{aligned}
& \mathbf{e}_{1}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array} { l }
{ 2 r _ { 1 } + r _ { 2 } = 1 } \\
{ 5 r _ { 1 } + 3 r _ { 2 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
r_{1}=3 \\
r_{2}=-5
\end{array}\right.\right. \\
& \mathbf{e}_{2}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array} { l }
{ 2 r _ { 1 } + r _ { 2 } = 0 } \\
{ 5 r _ { 1 } + 3 r _ { 2 } = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
r_{1}=-1 \\
r_{2}=2
\end{array}\right.\right.
\end{aligned}
$$

Thus $\mathbf{e}_{1}=3 \mathbf{v}_{1}-5 \mathbf{v}_{2}$ and $\mathbf{e}_{2}=-\mathbf{v}_{1}+2 \mathbf{v}_{2}$. Then for any vector $\mathbf{w}=(a, b) \in \mathbb{R}^{2}$ we have

$$
\begin{aligned}
\mathbf{w} & =a \mathbf{e}_{1}+b \mathbf{e}_{2}=a\left(3 \mathbf{v}_{1}-5 \mathbf{v}_{2}\right)+b\left(-\mathbf{v}_{1}+2 \mathbf{v}_{2}\right) \\
& =(3 a-b) \mathbf{v}_{1}+(-5 a+2 b) \mathbf{v}_{2} .
\end{aligned}
$$

Problem Let $\mathbf{v}_{1}=(2,5)$ and $\mathbf{v}_{2}=(1,3)$. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a spanning set for \mathbb{R}^{2}.

Remarks on the alternative solution:
Notice that \mathbb{R}^{2} is spanned by vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ since $(a, b)=a \mathbf{e}_{1}+b \mathbf{e}_{2}$.
This is why we have checked that vectors \mathbf{e}_{1} and \mathbf{e}_{2} belong to $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Then

$$
\begin{gathered}
\mathbf{e}_{1}, \mathbf{e}_{2} \in \operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \Longrightarrow \operatorname{Span}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \subset \operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \\
\\
\Longrightarrow \mathbb{R}^{2} \subset \operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \Longrightarrow \operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\mathbb{R}^{2} .
\end{gathered}
$$

In general, to show that $\operatorname{Span}\left(S_{1}\right)=\operatorname{Span}\left(S_{2}\right)$, it is enough to check that $S_{1} \subset \operatorname{Span}\left(S_{2}\right)$ and $S_{2} \subset \operatorname{Span}\left(S_{1}\right)$.

More properties of span

Let S_{0} and S be subsets of a vector space V.

- $S_{0} \subset S \Longrightarrow \operatorname{Span}\left(S_{0}\right) \subset \operatorname{Span}(S)$.
- $\operatorname{Span}\left(S_{0}\right)=V$ and $S_{0} \subset S \Longrightarrow \operatorname{Span}(S)=V$.
- If $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a spanning set for V and \mathbf{v}_{0} is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is also a spanning set for V. Indeed, if $\mathbf{v}_{0}=r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}$, then $t_{0} \mathbf{v}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}=\left(t_{0} r_{1}+t_{1}\right) \mathbf{v}_{1}+\cdots+\left(t_{0} r_{k}+t_{k}\right) \mathbf{v}_{k}$.
- $\operatorname{Span}\left(S_{0} \cup\left\{\mathbf{v}_{0}\right\}\right)=\operatorname{Span}\left(S_{0}\right)$ if and only if $\mathbf{v}_{0} \in \operatorname{Span}\left(S_{0}\right)$.
If $\mathbf{v}_{0} \in \operatorname{Span}\left(S_{0}\right)$, then $S_{0} \cup\left\{\mathbf{v}_{0}\right\} \subset \operatorname{Span}\left(S_{0}\right)$, which implies $\operatorname{Span}\left(S_{0} \cup\left\{\mathbf{v}_{0}\right\}\right) \subset \operatorname{Span}\left(S_{0}\right)$. On the other hand, $\operatorname{Span}\left(S_{0}\right) \subset \operatorname{Span}\left(S_{0} \cup\left\{\mathbf{v}_{0}\right\}\right)$.

