MATH 311

Topics in Applied Mathematics I

Lecture 18:
 Change of basis (continued). Linear transformations.

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The mapping
vector $\mathbf{v} \mapsto$ its coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
is a one-to-one correspondence between V and \mathbb{R}^{n}.
This correspondence respects linear operations in V and in \mathbb{R}^{n}.

Change of coordinates

Let V be a vector space of dimension n.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for V and $g_{2}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ g_{1}^{-1}$ is a transformation of \mathbb{R}^{n}. It has the form $\mathbf{x} \mapsto U \mathbf{x}$, where U is an $n \times n$ matrix. U is called the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \mathbf{u}_{2} \ldots, \mathbf{u}_{n}$. Columns of U are coordinates of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$.

Problem. Find the transition matrix from the basis $\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(1,0,1), \mathbf{v}_{3}=(1,2,1)$ to the basis $\mathbf{u}_{1}=(1,1,0), \mathbf{u}_{2}=(0,1,1), \mathbf{u}_{3}=(1,1,1)$.

It is convenient to make a two-step transition: first from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$, and then from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.
Let U_{1} be the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ and U_{2} be the transition matrix from $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}:$

$$
U_{1}=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right), \quad U_{2}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \Longrightarrow$ coordinates \mathbf{x} Basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} \Longrightarrow$ coordinates $U_{1} \mathbf{x}$
Basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3} \Longrightarrow$ coordinates $U_{2}^{-1}\left(U_{1} \mathbf{x}\right)=\left(U_{2}^{-1} U_{1}\right) \mathbf{x}$
Thus the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is $U_{2}^{-1} U_{1}$.

$$
\begin{gathered}
U_{2}^{-1} U_{1}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right) \\
=\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right)=\left(\begin{array}{rrr}
-1 & -1 & 1 \\
1 & -1 & 1 \\
2 & 2 & 0
\end{array}\right) .
\end{gathered}
$$

Linear mapping $=$ linear transformation $=$ linear function
Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y}), \\
L(r \mathbf{x})=r L(\mathbf{x})
\end{gathered}
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{R}$.
A linear mapping $\ell: V \rightarrow \mathbb{R}$ is called a linear functional on V.

If $V_{1}=V_{2}$ (or if both V_{1} and V_{2} are functional spaces) then a linear mapping $L: V_{1} \rightarrow V_{2}$ is called a linear operator.

Linear mapping $=$ linear transformation $=$ linear function

Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y}), \\
L(r \mathbf{x})=r L(\mathbf{x})
\end{gathered}
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{R}$.
Remark. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=a x+b$ is a linear transformation of the vector space \mathbb{R} if and only if $b=0$.

Basic properties of linear transformations

Let $L: V_{1} \rightarrow V_{2}$ be a linear mapping.

- $L\left(r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+\cdots+r_{k} L\left(\mathbf{v}_{k}\right)$ for all $k \geq 1, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V_{1}$, and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.
$L\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}\right)=L\left(r_{1} \mathbf{v}_{1}\right)+L\left(r_{2} \mathbf{v}_{2}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+r_{2} L\left(\mathbf{v}_{2}\right)$,
$L\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+r_{3} \mathbf{v}_{3}\right)=L\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}\right)+L\left(r_{3} \mathbf{v}_{3}\right)=$ $=r_{1} L\left(\mathbf{v}_{1}\right)+r_{2} L\left(\mathbf{v}_{2}\right)+r_{3} L\left(\mathbf{v}_{3}\right)$, and so on.
- $L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$, where $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ are zero vectors in V_{1} and V_{2}, respectively.
$L\left(\mathbf{0}_{1}\right)=L\left(0 \mathbf{0}_{1}\right)=0 L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$.
- $L(-\mathbf{v})=-L(\mathbf{v})$ for any $\mathbf{v} \in V_{1}$.
$L(-\mathbf{v})=L((-1) \mathbf{v})=(-1) L(\mathbf{v})=-L(\mathbf{v})$.

Examples of linear mappings

- Scaling $L: V \rightarrow V, L(\mathbf{v})=s \mathbf{v}$, where $s \in \mathbb{R}$. $L(\mathbf{x}+\mathbf{y})=s(\mathbf{x}+\mathbf{y})=s \mathbf{x}+s \mathbf{y}=L(\mathbf{x})+L(\mathbf{y})$, $L(r \mathbf{x})=s(r \mathbf{x})=r(s \mathbf{x})=r L(\mathbf{x})$.
- Dot product with a fixed vector $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \ell(\mathbf{v})=\mathbf{v} \cdot \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{n}$. $\ell(\mathbf{x}+\mathbf{y})=(\mathbf{x}+\mathbf{y}) \cdot \mathbf{v}_{0}=\mathbf{x} \cdot \mathbf{v}_{0}+\mathbf{y} \cdot \mathbf{v}_{0}=\ell(\mathbf{x})+\ell(\mathbf{y})$, $\ell(r \mathbf{x})=(r \mathbf{x}) \cdot \mathbf{v}_{0}=r\left(\mathbf{x} \cdot \mathbf{v}_{0}\right)=r \ell(\mathbf{x})$.
- Cross product with a fixed vector
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L(\mathbf{v})=\mathbf{v} \times \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{3}$.
- Multiplication by a fixed matrix
$L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, L(\mathbf{v})=A \mathbf{v}$, where A is an $m \times n$ matrix and all vectors are column vectors.

Linear mappings of functional vector spaces

- Evaluation at a fixed point $\ell: F(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=f(a)$, where $a \in \mathbb{R}$.
- Multiplication by a fixed function $L: F(\mathbb{R}) \rightarrow F(\mathbb{R}), \quad L(f)=g f$, where $g \in F(\mathbb{R})$.
- Differentiation $D: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad L(f)=f^{\prime}$.
$D(f+g)=(f+g)^{\prime}=f^{\prime}+g^{\prime}=D(f)+D(g)$, $D(r f)=(r f)^{\prime}=r f^{\prime}=r D(f)$.
- Integration over a finite interval
$\ell: C(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=\int_{a}^{b} f(x) d x$, where $a, b \in \mathbb{R}, a<b$.

More properties of linear mappings

- If a linear mapping $L: V \rightarrow W$ is invertible then the inverse mapping $L^{-1}: W \rightarrow V$ is also linear.
- If $L: V \rightarrow W$ and $M: W \rightarrow X$ are linear mappings then the composition $M \circ L: V \rightarrow X$ is also linear.
- If $L_{1}: V \rightarrow W$ and $L_{2}: V \rightarrow W$ are linear mappings then the sum $L_{1}+L_{2}$ is also linear.

Linear differential operators

- an ordinary differential operator

$$
L: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), \quad L=g_{0} \frac{d^{2}}{d x^{2}}+g_{1} \frac{d}{d x}+g_{2}
$$

where g_{0}, g_{1}, g_{2} are smooth functions on \mathbb{R}.
That is, $L(f)=g_{0} f^{\prime \prime}+g_{1} f^{\prime}+g_{2} f$.

- Laplace's operator $\Delta: C^{\infty}\left(\mathbb{R}^{2}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

(a.k.a. the Laplacian; also denoted by ∇^{2}).

Linear integral operators

- anti-derivative

$$
L: C[a, b] \rightarrow C^{1}[a, b], \quad(L f)(x)=\int_{a}^{x} f(y) d y
$$

- Hilbert-Schmidt operator
$L: C[a, b] \rightarrow C[c, d], \quad(L f)(x)=\int_{a}^{b} K(x, y) f(y) d y$, where $K \in C([c, d] \times[a, b])$.
- Laplace transform
$\mathcal{L}: B C(0, \infty) \rightarrow C(0, \infty), \quad(\mathcal{L} f)(x)=\int_{0}^{\infty} e^{-x y} f(y) d y$.

Examples. $\quad \mathcal{M}_{m, n}(\mathbb{R})$: the space of $m \times n$ matrices.

- $\alpha: \mathcal{M}_{m, n}(\mathbb{R}) \rightarrow \mathcal{M}_{n, m}(\mathbb{R}), \quad \alpha(A)=A^{T}$.
$\alpha(A+B)=\alpha(A)+\alpha(B) \Longleftrightarrow(A+B)^{T}=A^{T}+B^{T}$.
$\alpha(r A)=r \alpha(A) \Longleftrightarrow(r A)^{T}=r A^{T}$.
Hence α is linear.
- $\beta: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathbb{R}, \quad \beta(A)=\operatorname{det} A$.

Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
Then $A+B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
We have $\operatorname{det}(A)=\operatorname{det}(B)=0$ while $\operatorname{det}(A+B)=1$. Hence $\beta(A+B) \neq \beta(A)+\beta(B)$ so that β is not linear.

Range and kernel

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The range (or image) of L is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w}=L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of L is denoted $L(V)$.
The kernel of L, denoted $\operatorname{ker} L$, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v})=\mathbf{0}$.

Theorem (i) The range of L is a subspace of W.
(ii) The kernel of L is a subspace of V.

