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Topics in Applied Mathematics I

Lecture 25:
Orthogonal projection (continued).

Least squares problems.



Orthogonal complement

Definition. Let S ⊂ R
n. The orthogonal

complement of S , denoted S⊥, is the set of all
vectors x ∈ R

n that are orthogonal to S .

Theorem 1 (i) S⊥ is a subspace of Rn.

(ii) (S⊥)⊥ = Span(S).

Theorem 2 If V is a subspace of Rn, then

(i) (V⊥)⊥ = V ,
(ii) V ∩ V⊥ = {0},
(iii) dimV + dimV⊥ = n.

Theorem 3 If V is the row space of a matrix, then
V⊥ is the nullspace of the same matrix.
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Orthogonal projection

Theorem 1 Let V be a subspace of Rn. Then
any vector x ∈ R

n is uniquely represented as

x = p+ o, where p ∈ V and o ∈ V⊥.

In the above expansion, p is called the orthogonal
projection of the vector x onto the subspace V .

Theorem 2 ‖x− v‖ > ‖x− p‖ for any v 6= p in V .

Thus ‖o‖ = ‖x− p‖ = min
v∈V

‖x− v‖ is the

distance from the vector x to the subspace V .
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Orthogonal projection onto a vector

Let x, y ∈ R
n, with y 6= 0.

Then there exists a unique decomposition x = p+ o
such that p is parallel to y and o is orthogonal to y.

y

p

xo

p = orthogonal projection of x onto y



Orthogonal projection onto a vector

Let x, y ∈ R
n, with y 6= 0.

Then there exists a unique decomposition x = p+ o

such that p is parallel to y and o is orthogonal to y.

We have p = αy for some α ∈ R. Then

0 = o · y = (x− αy) · y = x · y − αy · y.

=⇒ α =
x · y
y · y =⇒ p =

x · y
y · y y



Problem. Find the distance from the point
x = (3, 1) to the line spanned by y = (2,−1).

Consider the decomposition x = p+ o, where p is parallel to
y while o ⊥ y. The required distance is the length of the
orthogonal component o.

p =
x · y
y · y y =

5

5
(2,−1) = (2,−1),

o = x− p = (3, 1)− (2,−1) = (1, 2), ‖o‖ =
√
5.

Problem. Find the point on the line y = −x that
is closest to the point (3, 4).

The required point is the projection p of v = (3, 4) on the
vector w = (1,−1) spanning the line y = −x .

p =
v · w
w · w w =

−1

2
(1,−1) =

(
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.



Problem. Let Π be the plane spanned by vectors
v1 = (1, 1, 0) and v2 = (0, 1, 1).

(i) Find the orthogonal projection of the vector
x = (4, 0,−1) onto the plane Π.

(ii) Find the distance from x to Π.

We have x = p+ o, where p ∈ Π and o ⊥ Π.
Then the orthogonal projection of x onto Π is p and

the distance from x to Π is ‖o‖.
We have p = αv1 + βv2 for some α, β ∈ R.
Then o = x− p = x− αv1 − βv2.
{

o · v1 = 0

o · v2 = 0
⇐⇒

{

α(v1 · v1) + β(v2 · v1) = x · v1
α(v1 · v2) + β(v2 · v2) = x · v2



x = (4, 0,−1), v1 = (1, 1, 0), v2 = (0, 1, 1)

{

α(v1 · v1) + β(v2 · v1) = x · v1
α(v1 · v2) + β(v2 · v2) = x · v2

⇐⇒
{

2α+ β = 4

α + 2β = −1
⇐⇒

{

α = 3

β = −2

p = 3v1 − 2v2 = (3, 1,−2)

o = x− p = (1,−1, 1)

‖o‖ =
√
3



Problem. Let Π be the plane spanned by vectors
v1 = (1, 1, 0) and v2 = (0, 1, 1).

(i) Find the orthogonal projection of the vector
x = (4, 0,−1) onto the plane Π.
(ii) Find the distance from x to Π.

Alternative solution: We have x = p+ o, where p ∈ Π and
o ⊥ Π. Then the orthogonal projection of x onto Π is p and
the distance from x to Π is ‖o‖.
Notice that o is the orthogonal projection of x onto the
orthogonal complement Π⊥. In the previous lecture, we found
that Π⊥ is the line spanned by the vector y = (1,−1, 1). It
follows that

o =
x · y
y · y y =

3

3
(1,−1, 1) = (1,−1, 1).

Then p = x− o = (4, 0,−1)− (1,−1, 1) = (3, 1,−2) and
‖o‖ =

√
3.



Overdetermined system of linear equations:






x + 2y = 3

3x + 2y = 5
x + y = 2.09

⇐⇒







x + 2y = 3

−4y = −4
−y = −0.91

No solution: inconsistent system

Assume that a solution (x0, y0) does exist but the

system is not quite accurate, namely, there may be
some errors in the right-hand sides.

Problem. Find a good approximation of (x0, y0).

One approach is the least squares fit. Namely,
we look for a pair (x , y) that minimizes the sum

(x + 2y − 3)2 + (3x + 2y − 5)2 + (x + y − 2.09)2.



Least squares solution

System of linear equations:














a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

⇐⇒ Ax = b

For any x ∈ R
n define a residual r(x) = b− Ax.

The least squares solution x to the system is the

one that minimizes ‖r(x)‖ (or, equivalently, ‖r(x)‖2).

‖r(x)‖2 =
m
∑

i=1

(ai1x1 + ai2x2 + · · ·+ ainxn − bi)
2



Let A be an m×n matrix and let b ∈ R
m.

Theorem A vector x̂ is a least squares solution of

the system Ax = b if and only if it is a solution of

the associated normal system ATAx = ATb.

Proof: Ax is an arbitrary vector in R(A), the column space of
A. Hence the length of r(x) = b− Ax is minimal if Ax is the
orthogonal projection of b onto R(A). That is, if r(x) is
orthogonal to R(A).

We know that {row space}⊥ = {nullspace} for any matrix.
In particular, R(A)⊥ = N(AT ), the nullspace of the transpose
matrix of A. Thus x̂ is a least squares solution if and only if

AT r(x̂) = 0 ⇐⇒ AT (b− Ax̂) = 0 ⇐⇒ ATAx̂ = ATb.

Corollary The normal system ATAx = ATb is
always consistent.



Problem. Find the least squares solution to






x + 2y = 3
3x + 2y = 5

x + y = 2.09
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⇐⇒
{

x = 1

y = 1.01


