MATH 311

Topics in Applied Mathematics I

Lecture 27:

Review for Test 2.

Topics for Test 2

Vector spaces (Leon/Colley 3.4–3.6)

- Basis and dimension
- Rank and nullity of a matrix
- Coordinates relative to a basis
- Change of basis, transition matrix

Linear transformations (Leon/Colley 4.1–4.3)

- Linear transformations
- Matrix transformations
- Matrix of a linear transformation
- Similar matrices

Topics for Test 2

Eigenvalues and eigenvectors (Leon/Colley 6.1, 6.3)

- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Diagonalization

Orthogonality (Leon/Colley 5.1–5.3, 5.5–5.6)

- Orthogonal complement
- Orthogonal projection
- Least squares problems
- The Gram-Schmidt orthogonalization process

Sample problems for Test 2

Problem 1 Let
$$A = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$
.

- (i) Find the rank and the nullity of the matrix A.
- (ii) Find a basis for the row space of A, then extend this basis to a basis for \mathbb{R}^4 .
- (iii) Find a basis for the nullspace of A.

Problem 2 Let V be a subspace of $F(\mathbb{R})$ spanned by functions e^x and e^{-x} . Let L be a linear operator on V such that $\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$ is the matrix of L relative to the basis e^x , e^{-x} . Find the matrix of L relative to the basis $\cosh x = \frac{1}{2}(e^x + e^{-x})$, $\sinh x = \frac{1}{2}(e^x - e^{-x})$.

Sample problems for Test 2

Problem 3 Let $L:V\to W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that

$$\dim \operatorname{Range}(L) + \dim \ker(L) = \dim V.$$

Problem 4 Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

- (i) Find all eigenvalues of the matrix A.
- (ii) For each eigenvalue of A, find an associated eigenvector.
- (iii) Is the matrix A diagonalizable? Explain.
- (iv) Find all eigenvalues of the matrix A^2 .

Sample problems for Test 2

Problem 5 Find a linear polynomial which is the best least squares fit to the following data:

Problem 6 Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1 = (1, 1, 1, 1)$ and $\mathbf{x}_2 = (1, 0, 3, 0)$.

- (i) Find an orthonormal basis for V.
- (ii) Find an orthonormal basis for the orthogonal complement V^{\perp} .

Problem 1. Let
$$A = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$
.

(i) Find the rank and the nullity of the matrix A.

The rank (= dimension of the row space) and the nullity (= dimension of the nullspace) of a matrix are preserved under elementary row operations. We apply such operations to convert the matrix A into row echelon form.

Interchange the 1st row with the 2nd row:

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$

Add 3 times the 1st row to the 3rd row, then subtract 2 times the 1st row from the 4th row:

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ 0 & 3 & 5 & -3 \\ 2 & -1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ 0 & 3 & 5 & -3 \\ 0 & -3 & -4 & 3 \end{pmatrix}$$

Multiply the 2nd row by -1:

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 3 & 5 & -3 \\ 0 & -3 & -4 & 3 \end{pmatrix}$$

Add the 4th row to the 3rd row:

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -3 & -4 & 3 \end{pmatrix}$$

Add 3 times the 2nd row to the 4th row:

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -16 & 0 \end{pmatrix}$$

Add 16 times the 3rd row to the 4th row:

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Now that the matrix is in row echelon form, its rank equals the number of nonzero rows, which is 3. Since

$$(rank of A) + (nullity of A) = (the number of columns of A) = 4,$$
 it follows that the nullity of A equals 1.

Problem 1. Let
$$A = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$
.

(ii) Find a basis for the row space of A, then extend this basis to a basis for \mathbb{R}^4 .

The row space of a matrix is invariant under elementary row operations. Therefore the row space of the matrix A is the same as the row space of its row echelon form:

$$\begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

The nonzero rows of the latter matrix are linearly independent so that they form a basis for its row space:

$$\mathbf{v}_1 = (1, 1, 2, -1), \ \mathbf{v}_2 = (0, 1, -4, -1), \ \mathbf{v}_3 = (0, 0, 1, 0).$$

To extend the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to a basis for \mathbb{R}^4 , we need a vector $\mathbf{v}_4 \in \mathbb{R}^4$ that is not a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

It is known that at least one of the vectors $\mathbf{e}_1 = (1,0,0,0)$, $\mathbf{e}_2 = (0,1,0,0)$, $\mathbf{e}_3 = (0,0,1,0)$, and $\mathbf{e}_4 = (0,0,0,1)$ can be chosen as \mathbf{v}_4 .

In particular, the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{e}_4$ form a basis for \mathbb{R}^4 . This follows from the fact that the 4 × 4 matrix whose rows are these vectors is not singular:

$$\begin{vmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1 \neq 0.$$

Problem 1. Let
$$A = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$
.

(iii) Find a basis for the nullspace of A.

The nullspace of A is the solution set of the system of linear homogeneous equations with A as the coefficient matrix. To solve the system, we convert A to reduced row echelon form:

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\implies x_1 = x_2 - x_4 = x_3 = 0$$

General solution: $(x_1, x_2, x_3, x_4) = (0, t, 0, t) = t(0, 1, 0, 1)$.

Thus the vector (0, 1, 0, 1) forms a basis for the nullspace of A.

Problem 2. Let V be a subspace of $F(\mathbb{R})$ spanned by functions e^x and e^{-x} . Let L be a linear operator on V such that $\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$ is the matrix of L relative to the basis e^x , e^{-x} . Find the matrix of L relative to the basis $\cosh x = \frac{1}{2}(e^x + e^{-x})$, $\sinh x = \frac{1}{2}(e^x - e^{-x})$.

Let A denote the matrix of the operator L relative to the basis e^x , e^{-x} (which is given) and B denote the matrix of L relative to the basis $\cosh x$, $\sinh x$ (which is to be found). By definition of the functions $\cosh x$ and $\sinh x$, the transition matrix from $\cosh x$, $\sinh x$ to e^x , e^{-x} is $U = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. It follows that $B = U^{-1}AU$. We obtain that

$$B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \cdot \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 4 \end{pmatrix}.$$

Problem 3. Let $L: V \to W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that $\dim \operatorname{Range}(L) + \dim \ker(L) = \dim V$.

The kernel ker(L) is a subspace of V. It is finite-dimensional since the vector space V is.

Take a basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ for the subspace $\ker(L)$, then extend it to a basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ for the entire space V.

Claim Vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \dots, L(\mathbf{u}_m)$ form a basis for the range of L.

Assuming the claim is proved, we obtain $\dim \operatorname{Range}(L) = m$, $\dim \ker(L) = k$, $\dim V = k + m$.

Claim Vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \dots, L(\mathbf{u}_m)$ form a basis for the range of L.

Proof (spanning): Any vector $\mathbf{w} \in \operatorname{Range}(L)$ is represented as $\mathbf{w} = L(\mathbf{v})$, where $\mathbf{v} \in V$. Then

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k + \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \dots + \beta_m \mathbf{u}_m$$

for some $\alpha_i, \beta_i \in \mathbb{R}$. It follows that

$$\mathbf{w} = L(\mathbf{v}) = \alpha_1 L(\mathbf{v}_1) + \dots + \alpha_k L(\mathbf{v}_k) + \beta_1 L(\mathbf{u}_1) + \dots + \beta_m L(\mathbf{u}_m)$$
$$= \beta_1 L(\mathbf{u}_1) + \dots + \beta_m L(\mathbf{u}_m).$$

Note that $L(\mathbf{v}_i) = \mathbf{0}$ since $\mathbf{v}_i \in \ker(L)$.

Thus Range(L) is spanned by the vectors $L(\mathbf{u}_1), \ldots, L(\mathbf{u}_m)$.

Claim Vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \dots, L(\mathbf{u}_m)$ form a basis for the range of L.

Proof (linear independence): Suppose that

$$t_1L(\mathbf{u}_1)+t_2L(\mathbf{u}_2)+\cdots+t_mL(\mathbf{u}_m)=\mathbf{0}$$

for some $t_i \in \mathbb{R}$. Let $\mathbf{u} = t_1 \mathbf{u}_1 + t_2 \mathbf{u}_2 + \cdots + t_m \mathbf{u}_m$. Since

$$L(\mathbf{u}) = t_1 L(\mathbf{u}_1) + t_2 L(\mathbf{u}_2) + \cdots + t_m L(\mathbf{u}_m) = \mathbf{0},$$

the vector **u** belongs to the kernel of L. Therefore $\mathbf{u} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \cdots + s_k \mathbf{v}_k$ for some $s_i \in \mathbb{R}$. It follows that

$$t_1\mathbf{u}_1+t_2\mathbf{u}_2+\cdots+t_m\mathbf{u}_m-s_1\mathbf{v}_1-s_2\mathbf{v}_2-\cdots-s_k\mathbf{v}_k=\mathbf{u}-\mathbf{u}=\mathbf{0}.$$

Linear independence of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{u}_1, \ldots, \mathbf{u}_m$ implies that $t_1 = \cdots = t_m = 0$ (as well as $s_1 = \cdots = s_k = 0$). Thus the vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \ldots, L(\mathbf{u}_m)$ are linearly independent.

Problem 4. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation $\det(A - \lambda I) = 0$. We obtain that

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 & 0 \\ 1 & 1 - \lambda & 1 \\ 0 & 2 & 1 - \lambda \end{vmatrix}$$

$$= (1 - \lambda)^3 - 2(1 - \lambda) - 2(1 - \lambda) = (1 - \lambda)((1 - \lambda)^2 - 4)$$

$$=(1-\lambda)\big((1-\lambda)-2\big)\big((1-\lambda)+2\big)=-(\lambda-1)(\lambda+1)(\lambda-3).$$

Hence the matrix A has three eigenvalues: -1, 1, and 3.

Problem 4. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector $\mathbf{v} = (x, y, z)$ of the matrix A associated with an eigenvalue λ is a nonzero solution of the vector equation

$$(A-\lambda I)\mathbf{v} = \mathbf{0} \iff \begin{pmatrix} 1-\lambda & 2 & 0 \\ 1 & 1-\lambda & 1 \\ 0 & 2 & 1-\lambda \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

To solve the equation, we convert the matrix $A - \lambda I$ to reduced row echelon form.

First consider the case $\lambda = -1$. The row reduction yields

$$A+I = \begin{pmatrix} 2 & 2 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix}$$

$$ightarrow egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 2 & 2 \end{pmatrix}
ightarrow egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 0 \end{pmatrix}
ightarrow egin{pmatrix} 1 & 0 & -1 \ 0 & 1 & 1 \ 0 & 0 & 0 \end{pmatrix}.$$

Hence

$$(A+I)\mathbf{v} = \mathbf{0} \quad \Longleftrightarrow \quad \begin{cases} x-z=0, \\ y+z=0. \end{cases}$$

The general solution is x=t, y=-t, z=t, where $t\in\mathbb{R}$. In particular, $\mathbf{v}_1=(1,-1,1)$ is an eigenvector of A associated with the eigenvalue -1.

Secondly, consider the case $\lambda = 1$. The row reduction yields

$$A - I = \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence

$$(A-I)\mathbf{v} = \mathbf{0} \quad \Longleftrightarrow \quad \begin{cases} x+z=0, \\ y=0. \end{cases}$$

The general solution is x=-t, y=0, z=t, where $t\in\mathbb{R}$. In particular, $\mathbf{v}_2=(-1,0,1)$ is an eigenvector of A associated with the eigenvalue 1.

Finally, consider the case $\lambda = 3$. The row reduction yields

$$A-3I = \begin{pmatrix} -2 & 2 & 0 \\ 1 & -2 & 1 \\ 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & 2 & -2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence

$$(A-3I)\mathbf{v} = \mathbf{0} \quad \Longleftrightarrow \quad \begin{cases} x-z=0, \\ y-z=0. \end{cases}$$

The general solution is x = t, y = t, z = t, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_3 = (1, 1, 1)$ is an eigenvector of A associated with the eigenvalue 3.

Problem 4. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for \mathbb{R}^3 formed by its eigenvectors.

Namely, the vectors $\mathbf{v}_1=(1,-1,1)$, $\mathbf{v}_2=(-1,0,1)$, and $\mathbf{v}_3=(1,1,1)$ are eigenvectors of the matrix A belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$ is a basis for \mathbb{R}^3 .

Alternatively, the existence of a basis for \mathbb{R}^3 consisting of eigenvectors of A already follows from the fact that the matrix A has three distinct eigenvalues.

Problem 4. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(iv) Find all eigenvalues of the matrix A^2 .

Suppose that \mathbf{v} is an eigenvector of the matrix A associated with an eigenvalue λ , that is, $\mathbf{v} \neq \mathbf{0}$ and $A\mathbf{v} = \lambda \mathbf{v}$. Then

$$A^2\mathbf{v} = A(A\mathbf{v}) = A(\lambda\mathbf{v}) = \lambda(A\mathbf{v}) = \lambda(\lambda\mathbf{v}) = \lambda^2\mathbf{v}.$$

Therefore \mathbf{v} is also an eigenvector of the matrix A^2 and the associated eigenvalue is λ^2 . We already know that the matrix A has eigenvalues -1, 1, and 3. It follows that A^2 has eigenvalues 1 and 9.

Since a 3×3 matrix can have up to 3 eigenvalues, we need an additional argument to show that 1 and 9 are the only eigenvalues of A^2 . One reason is that the eigenvalue 1 has multiplicity 2.

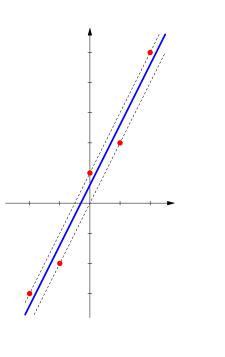
Problem 5. Find a linear polynomial which is the best least squares fit to the following data:

We are looking for a function $f(x) = c_1 + c_2 x$, where c_1, c_2 are unknown coefficients. The data of the problem give rise to an overdetermined system of linear equations in variables c_1 and c_2 :

$$\begin{cases} c_1 - 2c_2 = -3, \\ c_1 - c_2 = -2, \\ c_1 = 1, \\ c_1 + c_2 = 2, \\ c_1 + 2c_2 = 5. \end{cases}$$

This system is inconsistent.

We can represent the system as a matrix equation $A\mathbf{c} = \mathbf{y}$, where


$$A = \begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} -3 \\ -2 \\ 1 \\ 2 \\ 5 \end{pmatrix}.$$

The least squares solution \mathbf{c} of the above system is a solution of the normal system $A^T A \mathbf{c} = A^T \mathbf{v}$:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} -3 \\ -2 \\ 1 \\ 2 \\ 5 \end{pmatrix}$$

$$\iff \begin{pmatrix} 5 & 0 \\ 0 & 10 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 20 \end{pmatrix} \iff \begin{cases} c_1 = 3/5 \\ c_2 = 2 \end{cases}$$

Thus the function $f(x) = \frac{3}{5} + 2x$ is the best least squares fit to the above data among linear polynomials.

Problem 6. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1 = (1, 1, 1, 1)$ and $\mathbf{x}_2 = (1, 0, 3, 0)$.

(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to vectors $\mathbf{x}_1, \mathbf{x}_2$ and obtain an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2$ for the subspace V:

$$\mathbf{v}_1 = \mathbf{x}_1 = (1, 1, 1, 1),$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = (1, 0, 3, 0) - \frac{4}{4} (1, 1, 1, 1) = (0, -1, 2, -1).$$

Then we normalize vectors \mathbf{v}_1 , \mathbf{v}_2 to obtain an orthonormal basis \mathbf{w}_1 , \mathbf{w}_2 for V:

$$\|\mathbf{v}_1\| = 2 \implies \mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \frac{1}{2}(1, 1, 1, 1)$$

$$\|\mathbf{v}_2\| = \sqrt{6} \implies \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \frac{1}{\sqrt{6}}(0, -1, 2, -1)$$

Problem 6. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1 = (1, 1, 1, 1)$ and $\mathbf{x}_2 = (1, 0, 3, 0)$.

(ii) Find an orthonormal basis for the orthogonal complement V^{\perp} .

Since the subspace V is spanned by vectors (1,1,1,1) and (1,0,3,0), it is the row space of the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 0 \end{pmatrix}.$$

Then the orthogonal complement V^{\perp} is the nullspace of A. To find the nullspace, we convert the matrix A to reduced row echelon form:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix}.$$

Hence a vector $(x_1,x_2,x_3,x_4)\in\mathbb{R}^4$ belongs to V^\perp if and only if

$$\begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} x_1 + 3x_3 = 0 \\ x_2 - 2x_3 + x_4 = 0 \end{cases} \iff \begin{cases} x_1 = -3x_3 \\ x_2 = 2x_3 - x_4 \end{cases}$$

The general solution of the system is $(x_1, x_2, x_3, x_4) = (-3t, 2t - s, t, s) = t(-3, 2, 1, 0) + s(0, -1, 0, 1)$, where $t, s \in \mathbb{R}$.

It follows that V^{\perp} is spanned by vectors $\mathbf{x}_3 = (0, -1, 0, 1)$ and $\mathbf{x}_4 = (-3, 2, 1, 0)$.

The vectors $\mathbf{x}_3 = (0, -1, 0, 1)$ and $\mathbf{x}_4 = (-3, 2, 1, 0)$ form a basis for the subspace V^{\perp} .

It remains to orthogonalize and normalize this basis:

$$\mathbf{v}_3 = \mathbf{x}_3 = (0, -1, 0, 1),$$
 $\mathbf{v}_4 = \mathbf{x}_4 - \frac{\mathbf{x}_4 \cdot \mathbf{v}_3}{\mathbf{v}_3 \cdot \mathbf{v}_3} \mathbf{v}_3 = (-3, 2, 1, 0) - \frac{-2}{2} (0, -1, 0, 1)$
 $= (-3, 1, 1, 1),$

$$\|\mathbf{v}_3\| = \sqrt{2} \implies \mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \frac{1}{\sqrt{2}}(0, -1, 0, 1),$$

 $\|\mathbf{v}_4\| = \sqrt{12} = 2\sqrt{3} \implies \mathbf{w}_4 = \frac{\mathbf{v}_4}{\|\mathbf{v}_4\|} = \frac{1}{2\sqrt{3}}(-3, 1, 1, 1).$

Thus the vectors $\mathbf{w}_3 = \frac{1}{\sqrt{2}}(0, -1, 0, 1)$ and

 $\mathbf{w}_4 = \frac{1}{2\sqrt{3}}(-3,1,1,1)$ form an orthonormal basis for V^{\perp} .

Problem 6. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1 = (1,1,1,1)$ and $\mathbf{x}_2 = (1,0,3,0)$.

(i) Find an orthonormal basis for V.
(ii) Find an orthonormal basis for the orthogonal complement

Alternative solution: First we extend the set $\mathbf{x}_1, \mathbf{x}_2$ to a basis $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ for \mathbb{R}^4 . Then we orthogonalize and normalize the latter. This yields an orthonormal basis $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4$ for \mathbb{R}^4 .

By construction, $\mathbf{w}_1, \mathbf{w}_2$ is an orthonormal basis for V. It follows that $\mathbf{w}_3, \mathbf{w}_4$ is an orthonormal basis for V^{\perp} .

The set $\mathbf{x}_1 = (1, 1, 1, 1)$, $\mathbf{x}_2 = (1, 0, 3, 0)$ can be extended to a basis for \mathbb{R}^4 by adding two vectors from the standard basis.

For example, we can add vectors $\mathbf{e}_3=(0,0,1,0)$ and $\mathbf{e}_4=(0,0,0,1)$. To show that $\mathbf{x}_1,\mathbf{x}_2,\mathbf{e}_3,\mathbf{e}_4$ is indeed a basis for \mathbb{R}^4 , we check that the matrix whose rows are these vectors is nonsingular:

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = - \begin{vmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -1 \neq 0.$$

To orthogonalize the basis $\mathbf{x}_1, \mathbf{x}_2, \mathbf{e}_3, \mathbf{e}_4$, we apply the Gram-Schmidt process:

$$\mathbf{v}_1 = \mathbf{x}_1 = (1,1,1,1)$$
,

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = (1, 0, 3, 0) - \frac{4}{4}(1, 1, 1, 1) = (0, -1, 2, -1),$$

$$\begin{split} \textbf{v}_3 &= \textbf{e}_3 - \frac{\textbf{e}_3 \cdot \textbf{v}_1}{\textbf{v}_1 \cdot \textbf{v}_1} \textbf{v}_1 - \frac{\textbf{e}_3 \cdot \textbf{v}_2}{\textbf{v}_2 \cdot \textbf{v}_2} \textbf{v}_2 = (0, 0, 1, 0) - \frac{1}{4} (1, 1, 1, 1) - \\ &- \frac{2}{6} (0, -1, 2, -1) = \left(-\frac{1}{4}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12} \right) = \frac{1}{12} (-3, 1, 1, 1), \end{split}$$

$$\begin{split} \textbf{v}_4 &= \textbf{e}_4 - \frac{\textbf{e}_4 \cdot \textbf{v}_1}{\textbf{v}_1 \cdot \textbf{v}_1} \textbf{v}_1 - \frac{\textbf{e}_4 \cdot \textbf{v}_2}{\textbf{v}_2 \cdot \textbf{v}_2} \textbf{v}_2 - \frac{\textbf{e}_4 \cdot \textbf{v}_3}{\textbf{v}_3 \cdot \textbf{v}_3} \textbf{v}_3 = (0, 0, 0, 1) - \\ &- \frac{1}{4} (1, 1, 1, 1) - \frac{-1}{6} (0, -1, 2, -1) - \frac{1/12}{1/12} \cdot \frac{1}{12} (-3, 1, 1, 1) = \\ &= \left(0, -\frac{1}{2}, 0, \frac{1}{2}\right) = \frac{1}{2} (0, -1, 0, 1). \end{split}$$

It remains to normalize vectors $\mathbf{v}_1 = (1, 1, 1, 1)$, $\mathbf{v}_2 = (0, -1, 2, -1)$, $\mathbf{v}_3 = \frac{1}{12}(-3, 1, 1, 1)$, $\mathbf{v}_4 = \frac{1}{2}(0, -1, 0, 1)$:

 $\|\mathbf{v}_2\| = \sqrt{6} \implies \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \frac{1}{\sqrt{6}}(0, -1, 2, -1)$

 $\|\mathbf{v}_3\| = \frac{1}{\sqrt{12}} = \frac{1}{2\sqrt{3}} \implies \mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \frac{1}{2\sqrt{3}}(-3,1,1,1)$

$$\|\mathbf{v}_1\| = 2 \implies \mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \frac{1}{2}(1, 1, 1, 1)$$

$$\|\mathbf{v}_4\| = \frac{1}{\sqrt{2}} \implies \mathbf{w}_4 = \frac{\mathbf{v}_4}{\|\mathbf{v}_4\|} = \frac{1}{\sqrt{2}}(0, -1, 0, 1)$$
 Thus $\mathbf{w}_1, \mathbf{w}_2$ is an orthonormal basis for V while $\mathbf{w}_3, \mathbf{w}_4$ is an orthonormal basis for V^{\perp} .

Thus for any vector $\mathbf{y} \in \mathbb{R}^4$ the orthogonal projection of \mathbf{v} onto the subspace V is

projection of
$$\mathbf{y}$$
 onto the subspace V is
$$\mathbf{p} = (\mathbf{y} \cdot \mathbf{w}_1)\mathbf{w}_1 + (\mathbf{y} \cdot \mathbf{w}_2)\mathbf{w}_2$$

and the orthogonal projection of \mathbf{v} onto V^{\perp} is

$$\mathbf{o} = (\mathbf{y} \cdot \mathbf{w}_3)\mathbf{w}_3 + (\mathbf{y} \cdot \mathbf{w}_4)\mathbf{w}_4.$$

Also, the distance from **y** to V is $\|\mathbf{y} - \mathbf{p}\| = \|\mathbf{o}\|$ and the distance from \mathbf{y} to V^{\perp} is $\|\mathbf{y} - \mathbf{o}\| = \|\mathbf{p}\|$.