MATH 311 Topics in Applied Mathematics I Lecture 29: Orthogonality in inner product spaces.

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha : V \to \mathbb{R}$, usually denoted $\alpha(\mathbf{x}) = ||\mathbf{x}||$, is called a **norm** on V if it has the following properties:

(i) $\|\mathbf{x}\| \ge 0$, $\|\mathbf{x}\| = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\|r\mathbf{x}\| = |r| \|\mathbf{x}\|$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

A normed vector space is a vector space endowed with a norm. The norm defines a distance function on the normed vector space: $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

• $\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$

•
$$\|\mathbf{x}\|_{p} = (|x_{1}|^{p} + |x_{2}|^{p} + \dots + |x_{n}|^{p})^{1/p}, p \ge 1.$$

Examples.
$$V = C[a, b], f : [a, b] \rightarrow \mathbb{R}.$$

•
$$||f||_{\infty} = \max_{a \le x \le b} |f(x)|.$$

• $||f||_{p} = \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{1/p}, p \ge 1.$

Inner product

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if

 $\begin{array}{ll} (i) & \langle {\bf x}, {\bf x} \rangle \geq 0, \ \langle {\bf x}, {\bf x} \rangle = 0 \ \text{only for } {\bf x} = {\bf 0} \ \text{(positivity)} \\ (ii) & \langle {\bf x}, {\bf y} \rangle = \langle {\bf y}, {\bf x} \rangle & (\text{symmetry}) \\ (iii) & \langle r {\bf x}, {\bf y} \rangle = r \langle {\bf x}, {\bf y} \rangle & (\text{homogeneity}) \\ (iv) & \langle {\bf x} + {\bf y}, {\bf z} \rangle = \langle {\bf x}, {\bf z} \rangle + \langle {\bf y}, {\bf z} \rangle & (\text{distributive law}) \end{array}$

An **inner product space** is a vector space endowed with an inner product.

Examples. $V = \mathbb{R}^n$. • $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$. • $\langle \mathbf{x}, \mathbf{y} \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \dots + d_n x_n y_n$, where $d_1, d_2, \dots, d_n > 0$.

Examples.
$$V = C[a, b]$$
.
• $\langle f, g \rangle = \int_{a}^{b} f(x)g(x) dx$.
• $\langle f, g \rangle = \int_{a}^{b} f(x)g(x)w(x) dx$,

where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b].

Norms induced by inner products

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space *V*. Then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ is a norm.

Examples. • The length of a vector in \mathbb{R}^n , $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$,

is the norm induced by the dot product

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.$$

• The norm
$$||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$$
 on the

vector space C[a, b] is induced by the inner product

$$\langle f,g\rangle = \int_a^b f(x)g(x)\,dx.$$

Angle

Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\|\cdot\|$. Then $|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\| \|\mathbf{y}\|$

for all $\mathbf{x}, \mathbf{y} \in V$ (the Cauchy-Schwarz inequality). Therefore we can define the **angle** between nonzero vectors in V by

$$\angle(\mathsf{x},\mathsf{y}) = \arccosrac{\langle \mathsf{x},\mathsf{y}
angle}{\|\mathsf{x}\|\,\|\mathsf{y}\|}.$$

 $\text{Then } \langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \, \|\mathbf{y}\| \cos \angle (\mathbf{x}, \mathbf{y}).$

In particular, vectors **x** and **y** are **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Orthogonal sets

Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\|\cdot\|$.

Definition. A nonempty set $S \subset V$ of nonzero vectors is called an **orthogonal set** if all vectors in S are mutually orthogonal. That is, $\mathbf{0} \notin S$ and $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for any $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$. An orthogonal set $S \subset V$ is called **orthonormal** if $\|\mathbf{x}\| = 1$ for any $\mathbf{x} \in S$.

Remark. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an orthonormal set if and only if

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Example

•
$$V = C[-\pi, \pi], \ \langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) \, dx.$$

 $f_1(x) = \sin x, \ f_2(x) = \sin 2x, \dots, \ f_n(x) = \sin nx, \dots$

$$\langle f_m, f_n \rangle = \int_{-\pi}^{\pi} \sin(mx) \sin(nx) \, dx = \begin{cases} \pi & \text{if } m = n, \\ 0 & \text{if } m \neq n. \end{cases}$$

Thus the set $\{f_1, f_2, f_3, ...\}$ is orthogonal but not orthonormal.

It is orthonormal with respect to a scaled inner product

$$\langle\!\langle f,g\rangle\!\rangle = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)g(x)\,dx.$$

Orthogonality \implies **linear independence**

Theorem Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are nonzero vectors that form an orthogonal set. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Proof: Suppose $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$ for some $t_1, t_2, \ldots, t_k \in \mathbb{R}$.

Then for any index $1 \le i \le k$ we have

Orthonormal basis

Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthonormal basis for an inner product space V.

Theorem 1 Let $\mathbf{x} = x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_n\mathbf{v}_n$ and $\mathbf{y} = y_1\mathbf{v}_1 + y_2\mathbf{v}_2 + \cdots + y_n\mathbf{v}_n$, where $x_i, y_j \in \mathbb{R}$. Then

(i)
$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

(ii) $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$.

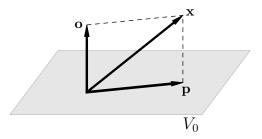
Theorem 2 For any vector $\mathbf{x} \in V$,

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{x}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \cdots + \langle \mathbf{x}, \mathbf{v}_n \rangle \mathbf{v}_n.$$

Orthogonal projection

Theorem Let *V* be an inner product space and V_0 be a finite-dimensional subspace of *V*. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.

The component **p** is called the **orthogonal projection** of the vector **x** onto the subspace V_0 .



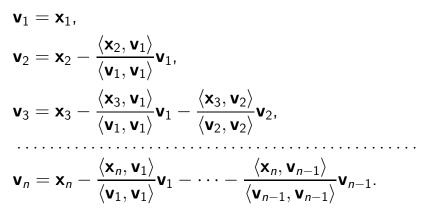
The projection **p** is closer to **x** than any other vector in V_0 . Hence the distance from **x** to V_0 is $||\mathbf{x} - \mathbf{p}|| = ||\mathbf{o}||$. **Theorem** Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.

Theorem Suppose $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an orthogonal basis for the subspace V_0 . Then for any vector $\mathbf{x} \in V$ the orthogonal projection \mathbf{p} onto V_0 is given by

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let



Then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an orthogonal basis for V.

Normalization

Let V be a vector space with an inner product. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.

Let
$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$$
, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$,..., $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}$.

Then $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$ is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.

Problem. Approximate the function $f(x) = e^x$ on the interval [-1, 1] by a quadratic polynomial.

The best approximation would be a polynomial p(x) that minimizes the distance relative to the uniform norm:

$$\|f - p\|_{\infty} = \max_{|x| \le 1} |f(x) - p(x)|.$$

However there is no analytic way to find such a polynomial. Instead, one can find a **"least** squares" approximation that minimizes the integral norm

$$||f - p||_2 = \left(\int_{-1}^1 |f(x) - p(x)|^2 dx\right)^{1/2}$$

The norm $\|\cdot\|_2$ is induced by the inner product

$$\langle g,h\rangle = \int_{-1}^{1} g(x)h(x)\,dx.$$

Therefore $||f - p||_2$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^2$, which form a basis for \mathcal{P}_3 . This would yield an orthogonal basis p_0, p_1, p_2 . Then

$$p(x) = rac{\langle f, p_0
angle}{\langle p_0, p_0
angle} p_0(x) + rac{\langle f, p_1
angle}{\langle p_1, p_1
angle} p_1(x) + rac{\langle f, p_2
angle}{\langle p_2, p_2
angle} p_2(x).$$

Fourier series: view from linear algebra

Suppose $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n, \ldots$ are nonzero vectors in an inner product space V that form an orthogonal set S. Given $\mathbf{x} \in V$, the **Fourier series** of the vector \mathbf{x} relative to the orthogonal set S is a series

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n + \cdots$$
, where $c_i = \frac{\langle \mathbf{x}, \mathbf{v}_i \rangle}{\langle \mathbf{v}_i, \mathbf{v}_i \rangle}$.

The numbers c_1, c_2, \ldots are called the **Fourier coefficients** of **x** relative to *S*.

By construction, a partial sum $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n$ of the Fourier series is the orthogonal projection of the vector \mathbf{x} onto the subspace $\text{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$.

Classical Fourier series

Consider a functional vector space $V = C[-\pi, \pi]$ with the standard inner product $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx$.

Then the functions $1, \sin x, \cos x, \sin 2x, \cos 2x, \ldots$ form an orthogonal set in the inner product space V. This gives rise to the classical Fourier series of a function $F \in C[-\pi, \pi]$:

$$a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

where

$$a_0=\frac{1}{2\pi}\int_{-\pi}^{\pi}F(x)\,dx$$

and for $n \ge 1$,

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cos nx \, dx, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \sin nx \, dx.$$

Convergence of Fourier series

Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n, \dots$ are vectors in an inner product space *V* that form an orthogonal set *S*. The set *S* is called a **Hilbert basis** for *V* if any vector $\mathbf{x} \in V$ can be expanded into a series $\mathbf{x} = \sum_{n=1}^{\infty} \alpha_n \mathbf{v}_n$, where α_n are some scalars.

Theorem 1 If S is a Hilbert basis for V, then the above expansion is unique for any vector $\mathbf{x} \in V$. Namely, it coincides with the Fourier series of \mathbf{x} relative to S.

Theorem 2 The functions $1, \sin x, \cos x, \sin 2x, \cos 2x, \ldots$ form a Hilbert basis for the space $C[-\pi, \pi]$.

As a consequence, Fourier series of a continuous function on $[-\pi,\pi]$ converges to this function with respect to the distance

dist
$$(f,g) = ||f-g|| = \left(\int_{-\pi}^{\pi} |f(x) - g(x)|^2 dx\right)^{1/2}$$

Note that this need not imply pointwise convergence.