MATH 311

Topics in Applied Mathematics I

Lecture 31:
Differentiation in vector spaces.
Gradient, divergence, and curl.

The derivative

Definition. A real function f is said to be differentiable at a point $a \in \mathbb{R}$ if it is defined on an open interval containing a and the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists. The limit is denoted $f^{\prime}(a)$ and called the derivative of f at a. An equivalent condition is

$$
f(a+h)=f(a)+f^{\prime}(a) h+r(h), \text { where } \lim _{h \rightarrow 0} r(h) / h=0 .
$$

If a function f is differentiable at a point a, then it is continuous at a.

Suppose that a function f is defined and differentiable on an interval l. Then the derivative of f can be regarded as a function on I.

Convergence in normed vector spaces

Suppose V is a vector space endowed with a norm $\|\cdot\|$. The norm gives rise to a distance function $\operatorname{dist}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$.
Definition. We say that a sequence of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots$ converges to a vector \mathbf{u} in the normed vector space V if $\left\|\mathbf{v}_{k}-\mathbf{u}\right\| \rightarrow 0$ as $k \rightarrow \infty$.

In the case $V=\mathbb{R}^{n}$, a sequence of vectors converges with respect to a norm if and only if it converges in each coordinate. In the case $V=\mathcal{M}_{m, n}(\mathbb{R})$, a sequence of matrices converges with respect to a norm if and only if it converges in each entry.

Similarly, in the case $\operatorname{dim} V<\infty$ we can choose a finite basis $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$. Any vector $\mathbf{v} \in V$ can be expanded into a linear combination $\mathbf{v}=x_{1} \mathbf{w}_{1}+x_{2} \mathbf{w}_{2}+\cdots+x_{n} \mathbf{w}_{n}$. Then a sequence of vectors converges with respect to a norm if and only if each of the coordinates x_{i} converges.

Vector-valued functions

Suppose V is a vector space endowed with a norm $\|\cdot\|$.
Definition. We say that a function $\mathbf{v}: X \rightarrow V$ defined on a set $X \subset \mathbb{R}$ converges to a limit $\mathbf{u} \in V$ at a point $a \in \mathbb{R}$ if $\|\mathbf{v}(x)-\mathbf{u}\| \rightarrow 0$ as $x \rightarrow a$.

Further, we say that the function \mathbf{v} is continuous at a point $c \in X$ if $\mathbf{v}(c)=\lim _{x \rightarrow c} \mathbf{v}(x)$.
Finally, the function \mathbf{v} is said to be differentiable at a point $a \in \mathbb{R}$ if it is defined on an open interval containing a and the limit

$$
\lim _{h \rightarrow 0} \frac{1}{h}(f(a+h)-f(a))
$$

exists. The limit is denoted $\mathbf{v}^{\prime}(a)$ and called the derivative of v at a .

Differentiability theorems

Sum Rule If functions $\mathbf{v}: X \rightarrow V$ and $\mathbf{w}: X \rightarrow V$ are differentiable at a point $a \in \mathbb{R}$, then the sum $\mathbf{v}+\mathbf{w}$ is also differentiable at a. Moreover, $(\mathbf{v}+\mathbf{w})^{\prime}(a)=\mathbf{v}^{\prime}(a)+\mathbf{w}^{\prime}(a)$.

Homogeneous Rule If a function $\mathbf{v}: X \rightarrow V$ is differentiable at a point $a \in \mathbb{R}$, then for any $r \in \mathbb{R}$ the scalar multiple $r v$ is also differentiable at a. Moreover, $(r \mathbf{v})^{\prime}(a)=r \mathbf{v}^{\prime}(a)$.

Difference Rule If functions $\mathbf{v}: X \rightarrow V$ and $\mathbf{w}: X \rightarrow V$ are differentiable at a point $a \in \mathbb{R}$, then the difference $\mathbf{v}-\mathbf{w}$ is also differentiable at a. Moreover,
$(\mathbf{v}-\mathbf{w})^{\prime}(a)=\mathbf{v}^{\prime}(a)-\mathbf{w}^{\prime}(a)$.

Differentiability theorems

Product Rule \#1 If functions $f: X \rightarrow \mathbb{R}$ and $\mathbf{v}: X \rightarrow V$ are differentiable at a point $a \in \mathbb{R}$, then the scalar multiple $f \mathbf{v}$ is also differentiable at a. Moreover,
$(f \mathbf{v})^{\prime}(a)=f^{\prime}(a) \mathbf{v}(a)+f(a) \mathbf{v}^{\prime}(a)$.
Product Rule \#2 Assume that the norm on V is induced by an inner product $\langle\cdot, \cdot\rangle$. If functions $\mathbf{v}: X \rightarrow V$ and $\mathbf{w}: X \rightarrow V$ are differentiable at a point $a \in \mathbb{R}$, then the inner product $\langle\mathbf{v}, \mathbf{w}\rangle$ is also differentiable at a. Moreover, $(\langle\mathbf{v}, \mathbf{w}\rangle)^{\prime}(a)=\left\langle\mathbf{v}^{\prime}(a), \mathbf{w}(a)\right\rangle+\left\langle\mathbf{v}(a), \mathbf{w}^{\prime}(a)\right\rangle$.

Chain Rule If a function $f: X \rightarrow \mathbb{R}$ is differentiable at a point $a \in \mathbb{R}$ and a function $\mathbf{v}: Y \rightarrow V$ is differentiable at $f(a)$, then the composition $\mathbf{v} \circ f$ is differentiable at a. Moreover, $(\mathbf{v} \circ f)^{\prime}(a)=f^{\prime}(a) \mathbf{v}^{\prime}(f(a))$.

Partial derivative

Consider a function $f: X \rightarrow V$ that is defined in a domain $X \subset \mathbb{R}^{n}$ and takes values in a normed vector space V. The function f depends on n real variables: $f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Let us select a point $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in X$ and a variable x_{i}. Now we go to the point a and fix all variables except x_{i}. That is, we introduce a function of one variable

$$
\phi(x)=f\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right) .
$$

If the function ϕ is differentiable at a_{i}, then the derivative $\phi^{\prime}\left(a_{i}\right)$ is called the partial derivative of f at the point a with respect to the variable x_{i}.
Notation: $\frac{\partial f}{\partial x_{i}}(\mathbf{a}), \frac{\partial}{\partial x_{i}} f(\mathbf{a}),\left(D_{x_{i}} f\right)(\mathbf{a})$.

Directional derivative

Consider a function $f: X \rightarrow V$ that is defined on a subset $X \subset W$ of a vector space W and takes values in a normed vector space V. For every point $\mathbf{a} \in X$ and vector $\mathbf{v} \in W$ we introduce a function of real variable $\phi(t)=f(\mathbf{a}+t \mathbf{v})$. If the function ϕ is differentiable at 0 , then the derivative $\phi^{\prime}(0)$ is called the directional derivative of f at the point a along the vector \mathbf{v}. Notation: $\left(D_{\mathbf{v}} f\right)(\mathbf{a})$.
The partial derivative is a particular case of the directional derivative, when $W=\mathbb{R}^{n}$ and \mathbf{v} is from the standard basis.

Homogeneity $\left(D_{r v} f\right)(\mathbf{a})=r\left(D_{v} f\right)(\mathbf{a})$ for all $r \in \mathbb{R}$ whenever $\left(D_{v} f\right)(\mathbf{a})$ exists.

Linearity Suppose W is a normed vector space, $\left(D_{v} f\right)(\mathbf{a})$ exists for all \mathbf{v} and depends continuously on \mathbf{a}. Then $\mathbf{v} \mapsto\left(D_{\mathbf{v}} f\right)(\mathbf{a})$ is a linear transformation.

The differential

Suppose V and W are normed vector spaces and consider a function $F: X \rightarrow V$, where $X \subset W$.

Definition. We say that the function F is differentiable at a point $\mathbf{a} \in X$ if it is defined in a neighborhood of \mathbf{a} and there exists a continuous linear transformation $L: W \rightarrow V$ such that $F(\mathbf{a}+\mathbf{v})=F(\mathbf{a})+L(\mathbf{v})+R(\mathbf{v})$, where $\|R(\mathbf{v})\| /\|\mathbf{v}\| \rightarrow 0$ as $\|\mathbf{v}\| \rightarrow 0$. The transformation L is called the differential of F at \mathbf{a} and denoted ($D F$)(a).

Theorem If a function F is differentiable at a point a, then the directional derivatives $\left(D_{\mathrm{v}} F\right)(\mathbf{a})$ exist for all \mathbf{v} and $\left(D_{\mathbf{v}} F\right)(\mathbf{a})=(D F)(\mathbf{a})[\mathbf{v}]$.

Fermat's Theorem If a real-valued function F is differentiable at a point a of local extremum, then the differential $(D F)(\mathbf{a})$ is identically zero.

Gradient, divergence, and curl

Gradient of a scalar field $f=f\left(x_{1}, x_{2} \ldots, x_{n}\right)$ is

$$
\operatorname{grad} f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

Divergence of a vector field $\mathbf{F}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ is

$$
\operatorname{div} \mathbf{F}=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\cdots+\frac{\partial F_{n}}{\partial x_{n}}
$$

Curl of a vector field $\mathbf{F}=\left(F_{1}, F_{2}, F_{3}\right)$ is

$$
\operatorname{curl} \mathbf{F}=\left(\frac{\partial F_{3}}{\partial x_{2}}-\frac{\partial F_{2}}{\partial x_{3}}, \frac{\partial F_{1}}{\partial x_{3}}-\frac{\partial F_{3}}{\partial x_{1}}, \frac{\partial F_{2}}{\partial x_{1}}-\frac{\partial F_{1}}{\partial x_{2}}\right)
$$

Informally, \quad curl $\mathbf{F}=\left|\begin{array}{ccc}\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\ \frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\ F_{1} & F_{2} & F_{3}\end{array}\right|$.

Del notation

Gradient, divergence, and curl can be denoted in a compact way using the del (a.k.a. nabla a.k.a. atled) "operator"

$$
\nabla=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right)
$$

Namely, $\operatorname{grad} f=\nabla f, \operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}, \operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}$.

Theorem $1 \operatorname{div}(\operatorname{curl} \mathbf{F})=0$ wherever the vector field \mathbf{F} is twice continuously differentiable.

Theorem $2 \operatorname{curl}(\operatorname{grad} f)=\mathbf{0}$ wherever the scalar field f is twice continuously differentiable.

In the del notation, $\nabla \cdot(\nabla \times \mathbf{F})=0$ and $\nabla \times(\nabla f)=\mathbf{0}$.

