MATH 311 Topics in Applied Mathematics I Lecture 31: Differentiation in vector spaces. Gradient, divergence, and curl.

The derivative

Definition. A real function f is said to be **differentiable** at a point $a \in \mathbb{R}$ if it is defined on an open interval containing a and the limit

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

exists. The limit is denoted f'(a) and called the **derivative** of f at a. An equivalent condition is

$$f(a+h) = f(a) + f'(a)h + r(h)$$
, where $\lim_{h \to 0} r(h)/h = 0$.

If a function f is differentiable at a point a, then it is continuous at a.

Suppose that a function f is defined and differentiable on an interval I. Then the derivative of f can be regarded as a function on I.

Convergence in normed vector spaces

Suppose V is a vector space endowed with a norm $\|\cdot\|$. The norm gives rise to a distance function $dist(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$.

Definition. We say that a sequence of vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \ldots$ converges to a vector \mathbf{u} in the normed vector space V if $\|\mathbf{v}_k - \mathbf{u}\| \to 0$ as $k \to \infty$.

In the case $V = \mathbb{R}^n$, a sequence of vectors converges with respect to a norm if and only if it converges in each coordinate. In the case $V = \mathcal{M}_{m,n}(\mathbb{R})$, a sequence of matrices converges with respect to a norm if and only if it converges in each entry.

Similarly, in the case dim $V < \infty$ we can choose a finite basis $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$. Any vector $\mathbf{v} \in V$ can be expanded into a linear combination $\mathbf{v} = x_1\mathbf{w}_1 + x_2\mathbf{w}_2 + \cdots + x_n\mathbf{w}_n$. Then a sequence of vectors converges with respect to a norm if and only if each of the coordinates x_i converges.

Vector-valued functions

Suppose V is a vector space endowed with a norm $\|\cdot\|$.

Definition. We say that a function $\mathbf{v} : X \to V$ defined on a set $X \subset \mathbb{R}$ converges to a limit $\mathbf{u} \in V$ at a point $a \in \mathbb{R}$ if $\|\mathbf{v}(x) - \mathbf{u}\| \to 0$ as $x \to a$.

Further, we say that the function **v** is continuous at a point $c \in X$ if $\mathbf{v}(c) = \lim_{x \to c} \mathbf{v}(x)$.

Finally, the function \mathbf{v} is said to be differentiable at a point $a \in \mathbb{R}$ if it is defined on an open interval containing a and the limit 1

$$\lim_{h\to 0}\frac{1}{h}(f(a+h)-f(a))$$

exists. The limit is denoted $\mathbf{v}'(a)$ and called the derivative of \mathbf{v} at a.

Differentiability theorems

Sum Rule If functions $\mathbf{v} : X \to V$ and $\mathbf{w} : X \to V$ are differentiable at a point $a \in \mathbb{R}$, then the sum $\mathbf{v} + \mathbf{w}$ is also differentiable at a. Moreover, $(\mathbf{v} + \mathbf{w})'(a) = \mathbf{v}'(a) + \mathbf{w}'(a)$.

Homogeneous Rule If a function $\mathbf{v} : X \to V$ is differentiable at a point $a \in \mathbb{R}$, then for any $r \in \mathbb{R}$ the scalar multiple $r\mathbf{v}$ is also differentiable at a. Moreover, $(r\mathbf{v})'(a) = r\mathbf{v}'(a)$.

Difference Rule If functions $\mathbf{v} : X \to V$ and $\mathbf{w} : X \to V$ are differentiable at a point $a \in \mathbb{R}$, then the difference $\mathbf{v} - \mathbf{w}$ is also differentiable at a. Moreover, $(\mathbf{v} - \mathbf{w})'(a) = \mathbf{v}'(a) - \mathbf{w}'(a)$.

Differentiability theorems

Product Rule #1 If functions $f : X \to \mathbb{R}$ and $\mathbf{v} : X \to V$ are differentiable at a point $a \in \mathbb{R}$, then the scalar multiple $f\mathbf{v}$ is also differentiable at a. Moreover, $(f\mathbf{v})'(a) = f'(a)\mathbf{v}(a) + f(a)\mathbf{v}'(a)$.

Product Rule #2 Assume that the norm on *V* is induced by an inner product $\langle \cdot, \cdot \rangle$. If functions $\mathbf{v} : X \to V$ and $\mathbf{w} : X \to V$ are differentiable at a point $a \in \mathbb{R}$, then the inner product $\langle \mathbf{v}, \mathbf{w} \rangle$ is also differentiable at *a*. Moreover, $(\langle \mathbf{v}, \mathbf{w} \rangle)'(a) = \langle \mathbf{v}'(a), \mathbf{w}(a) \rangle + \langle \mathbf{v}(a), \mathbf{w}'(a) \rangle$.

Chain Rule If a function $f : X \to \mathbb{R}$ is differentiable at a point $a \in \mathbb{R}$ and a function $\mathbf{v} : Y \to V$ is differentiable at f(a), then the composition $\mathbf{v} \circ f$ is differentiable at a. Moreover, $(\mathbf{v} \circ f)'(a) = f'(a)\mathbf{v}'(f(a))$.

Partial derivative

Consider a function $f : X \to V$ that is defined in a domain $X \subset \mathbb{R}^n$ and takes values in a normed vector space V. The function f depends on n real variables: $f = f(x_1, x_2, \ldots, x_n)$.

Let us select a point $\mathbf{a} = (a_1, a_2, \dots, a_n) \in X$ and a variable x_i . Now we go to the point \mathbf{a} and fix all variables except x_i . That is, we introduce a function of one variable

$$\phi(\mathbf{x}) = f(\mathbf{a}_1, \ldots, \mathbf{a}_{i-1}, \mathbf{x}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_n).$$

If the function ϕ is differentiable at a_i , then the derivative $\phi'(a_i)$ is called the **partial derivative** of f at the point **a** with respect to the variable x_i .

Notation:
$$\frac{\partial f}{\partial x_i}(\mathbf{a}), \ \frac{\partial}{\partial x_i}f(\mathbf{a}), \ (D_{x_i}f)(\mathbf{a}).$$

Directional derivative

Consider a function $f: X \to V$ that is defined on a subset $X \subset W$ of a vector space W and takes values in a normed vector space V. For every point $\mathbf{a} \in X$ and vector $\mathbf{v} \in W$ we introduce a function of real variable $\phi(t) = f(\mathbf{a} + t\mathbf{v})$. If the function ϕ is differentiable at 0, then the derivative $\phi'(0)$ is called the **directional derivative** of f at the point \mathbf{a} along the vector \mathbf{v} . Notation: $(D_{\mathbf{v}}f)(\mathbf{a})$.

The partial derivative is a particular case of the directional derivative, when $W = \mathbb{R}^n$ and **v** is from the standard basis.

Homogeneity $(D_{rv}f)(\mathbf{a}) = r(D_vf)(\mathbf{a})$ for all $r \in \mathbb{R}$ whenever $(D_vf)(\mathbf{a})$ exists.

Linearity Suppose W is a normed vector space, $(D_{\mathbf{v}}f)(\mathbf{a})$ exists for all \mathbf{v} and depends continuously on \mathbf{a} . Then $\mathbf{v} \mapsto (D_{\mathbf{v}}f)(\mathbf{a})$ is a linear transformation.

The differential

Suppose V and W are normed vector spaces and consider a function $F: X \to V$, where $X \subset W$.

Definition. We say that the function F is **differentiable** at a point $\mathbf{a} \in X$ if it is defined in a neighborhood of \mathbf{a} and there exists a continuous linear transformation $L: W \to V$ such that $F(\mathbf{a} + \mathbf{v}) = F(\mathbf{a}) + L(\mathbf{v}) + R(\mathbf{v})$, where $||R(\mathbf{v})||/||\mathbf{v}|| \to 0$ as $||\mathbf{v}|| \to 0$. The transformation L is called the **differential** of F at \mathbf{a} and denoted $(DF)(\mathbf{a})$.

Theorem If a function F is differentiable at a point \mathbf{a} , then the directional derivatives $(D_{\mathbf{v}}F)(\mathbf{a})$ exist for all \mathbf{v} and $(D_{\mathbf{v}}F)(\mathbf{a}) = (DF)(\mathbf{a})[\mathbf{v}]$.

Fermat's Theorem If a real-valued function F is differentiable at a point **a** of local extremum, then the differential $(DF)(\mathbf{a})$ is identically zero.

Gradient, divergence, and curl

Gradient of a scalar field
$$f = f(x_1, x_2, ..., x_n)$$
 is
grad $f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right).$

Divergence of a vector field $\mathbf{F} = (F_1, F_2, \dots, F_n)$ is $\operatorname{div} \mathbf{F} = \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \dots + \frac{\partial F_n}{\partial x_n}.$

Curl of a vector field $\mathbf{F} = (F_1, F_2, F_3)$ is

$$\operatorname{curl} \mathbf{F} = \left(\frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3}, \ \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1}, \ \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \right).$$

$$\operatorname{nformally, \ curl} \mathbf{F} = \left| \begin{array}{cc} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3\\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3}\\ F_1 & F_2 & F_3 \end{array} \right|.$$

Del notation

Gradient, divergence, and curl can be denoted in a compact way using the del (a.k.a. nabla a.k.a. atled) "operator"

$$\nabla = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n}\right).$$

Namely, grad $f = \nabla f$, div $\mathbf{F} = \nabla \cdot \mathbf{F}$, curl $\mathbf{F} = \nabla \times \mathbf{F}$.

Theorem 1 $\operatorname{div}(\operatorname{curl} F) = 0$ wherever the vector field F is twice continuously differentiable.

Theorem 2 $\operatorname{curl}(\operatorname{grad} f) = \mathbf{0}$ wherever the scalar field f is twice continuously differentiable.

In the del notation, $\nabla \cdot (\nabla \times \mathbf{F}) = 0$ and $\nabla \times (\nabla f) = \mathbf{0}$.