MATH 311
 Topics in Applied Mathematics I

Lecture 32:
 More on the differential. Review of integral calculus.

The differential

Suppose V and W are normed vector spaces and consider a function $F: X \rightarrow V$, where $X \subset W$.

Definition. We say that the function F is differentiable at a point $\mathbf{a} \in X$ if it is defined in a neighborhood of a and there exists a continuous linear transformation $L: W \rightarrow V$ such that

$$
F(\mathbf{a}+\mathbf{v})=F(\mathbf{a})+L(\mathbf{v})+R(\mathbf{v})
$$

where $\|R(\mathbf{v})\| /\|\mathbf{v}\| \rightarrow 0$ as $\|\mathbf{v}\| \rightarrow 0$. The transformation L is called the differential of F at \mathbf{a} and denoted $(D F)(\mathbf{a})$.

Remarks. - A linear transformation $L: W \rightarrow V$ is continuous if and only if $\|L(\mathbf{v})\| \leq C\|\mathbf{v}\|$ for some $C>0$ and all $\mathbf{v} \in W$.

- If $\operatorname{dim} W<\infty$ then any linear transformation $L: W \rightarrow V$ is continuous. Otherwise it is not so.

Examples

- Any linear transformation $L: \mathbb{R} \rightarrow \mathbb{R}$ is a scaling $L(x)=r x$ by a scalar r. If L is the differential of a function $f: X \rightarrow \mathbb{R}$ at a point $a \in \mathbb{R}$, then $r=f^{\prime}(a)$.
- Any linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation: $L(\mathbf{x})=B \mathbf{x}$, where $B=\left(b_{i j}\right)$ is an $m \times n$ matrix. If L is the differential of a function $\mathbf{F}: X \rightarrow \mathbb{R}^{m}$ at a point $\mathbf{a} \in \mathbb{R}^{n}$, then $b_{i j}=\frac{\partial F_{i}}{\partial x_{j}}(\mathbf{a})$.
The matrix B of partial derivatives is called the Jacobian matrix of \mathbf{F} and denoted $\frac{\partial\left(F_{1}, \ldots, F_{m}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}$.

Riemann sums and Riemann integral

Definition. A Riemann sum of a function $f:[a, b] \rightarrow \mathbb{R}$ with respect to a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ generated by samples $t_{j} \in\left[x_{j-1}, x_{j}\right]$ is a sum

$$
\mathcal{S}\left(f, P, t_{j}\right)=\sum_{j=1}^{n} f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right) .
$$

Remark. $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$ if $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$. The norm of the partition P is $\|P\|=\max _{1 \leq j \leq n}\left|x_{j}-x_{j-1}\right|$.

Definition. The Riemann sums $\mathcal{S}\left(f, P, t_{j}\right)$ converge to a limit $I(f)$ as the norm $\|P\| \rightarrow 0$ if for every $\varepsilon>0$ there exists $\delta>0$ such that $\|P\|<\delta$ implies $\left|\mathcal{S}\left(f, P, t_{j}\right)-I(f)\right|<\varepsilon$ for any partition P and choice of samples t_{j}.
If this is the case, then the function f is called integrable on $[a, b]$ and the limit $I(f)$ is called the integral of f over $[a, b]$, denoted $\int_{a}^{b} f(x) d x$.

Riemann sums and Darboux sums

Integration as a linear operation

Theorem 1 If functions f, g are integrable on an interval $[a, b]$, then the sum $f+g$ is also integrable on $[a, b]$ and

$$
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Theorem 2 If a function f is integrable on $[a, b]$, then for each $\alpha \in \mathbb{R}$ the scalar multiple αf is also integrable on $[a, b]$ and

$$
\int_{a}^{b} \alpha f(x) d x=\alpha \int_{a}^{b} f(x) d x
$$

More properties of integrals

Theorem If a function f is integrable on $[a, b]$ and $f([a, b]) \subset[A, B]$, then for each continuous function $g:[A, B] \rightarrow \mathbb{R}$ the composition $g \circ f$ is also integrable on $[a, b]$.

Theorem If functions f and g are integrable on $[a, b]$, then so is $f g$.

Theorem If a function f is integrable on $[a, b]$, then it is integrable on each subinterval $[c, d] \subset[a, b]$. Moreover, for any $c \in(a, b)$ we have

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x .
$$

Comparison theorems for integrals

Theorem 1 If functions f, g are integrable on $[a, b]$ and $f(x) \leq g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

Theorem 2 If f is integrable on $[a, b]$ and $f(x) \geq 0$ for $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \geq 0$.

Theorem 3 If f is integrable on $[a, b]$, then the function $|f|$ is also integrable on $[a, b]$ and

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Fundamental theorem of calculus

Theorem If a function f is continuous on an interval $[a, b]$, then the function

$$
F(x)=\int_{a}^{x} f(t) d t, \quad x \in[a, b]
$$

is continuously differentiable on $[a, b]$. Moreover, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$.

Theorem If a function F is differentiable on $[a, b]$ and the derivative F^{\prime} is integrable on $[a, b]$, then

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Change of the variable in an integral

Theorem If ϕ is continuously differentiable on a closed, nondegenerate interval $[a, b]$ and f is continuous on $\phi([a, b])$, then

$$
\int_{\phi(a)}^{\phi(b)} f(t) d t=\int_{a}^{b} f(\phi(x)) \phi^{\prime}(x) d x=\int_{a}^{b} f(\phi(x)) d \phi(x) .
$$

Remarks. - It is possible that $\phi(a) \geq \phi(b)$. To make sense of the integral in this case, we set

$$
\int_{c}^{d} f(t) d t=-\int_{d}^{c} f(t) d t
$$

if $c>d$. Also, we set the integral to be 0 if $c=d$.

- $t=\phi(x)$ is a proper change of the variable only if the function ϕ is strictly monotone. However the theorem holds even without this assumption.

Sets of measure zero

Definition. A subset E of the real line \mathbb{R} is said to have measure zero if for any $\varepsilon>0$ the set E can be covered by a sequence of open intervals J_{1}, J_{2}, \ldots such that $\sum_{n=1}^{\infty}\left|J_{n}\right|<\varepsilon$.

Examples. - Any set E that can be represented as a sequence x_{1}, x_{2}, \ldots (such sets are called countable) has measure zero. Indeed, for any $\varepsilon>0$, let

$$
J_{n}=\left(x_{n}-\frac{\varepsilon}{2^{n+1}}, x_{n}+\frac{\varepsilon}{2^{n+1}}\right), \quad n=1,2, \ldots
$$

Then $E \subset J_{1} \cup J_{2} \cup \ldots$ and $\left|J_{n}\right|=\varepsilon / 2^{n}$ for all $n \in \mathbb{N}$ so that $\sum_{n=1}^{\infty}\left|J_{n}\right|=\varepsilon$.

- The set \mathbb{Q} of rational numbers has measure zero (since it is countable).
- Nondegenerate interval $[a, b]$ is not a set of measure zero.

Lebesgue's criterion for Riemann integrability

Definition. Suppose $P(x)$ is a property depending on $x \in S$, where $S \subset \mathbb{R}$. We say that $P(x)$ holds for almost all $x \in S$ (or almost everywhere on $S)$ if the set $\{x \in S \mid P(x)$ does not hold $\}$ has measure zero.

Theorem A function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on the interval $[a, b]$ if and only if f is bounded on $[a, b]$ and continuous almost everywhere on $[a, b]$.

Area, volume, and determinants

- 2×2 determinants and plane geometry

Let P be a parallelogram in the plane \mathbb{R}^{2}. Suppose that vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$ are represented by adjacent sides of P. Then area $(P)=|\operatorname{det} A|$, where $A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$, a matrix whose columns are \mathbf{v}_{1} and \mathbf{v}_{2}.
Consider a linear operator $L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $L_{A}(\mathbf{v})=A \mathbf{v}$ for any column vector \mathbf{v}. Then $\operatorname{area}\left(L_{A}(D)\right)=|\operatorname{det} A| \operatorname{area}(D)$ for any bounded domain D.

- 3×3 determinants and space geometry

Let Π be a parallelepiped in space \mathbb{R}^{3}. Suppose that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{3}$ are represented by adjacent edges of Π. Then volume $(\Pi)=|\operatorname{det} B|$, where $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$, a matrix whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}.
Similarly, volume $\left(L_{B}(D)\right)=|\operatorname{det} B|$ volume (D) for any bounded domain $D \subset \mathbb{R}^{3}$.

volume $(\Pi)=|\operatorname{det} B|$, where $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$. Note that the parallelepiped Π is the image under L_{B} of a unit cube whose adjacent edges are $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$.
The triple $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ obeys the right-hand rule. We say that L_{B} preserves orientation if it preserves the hand rule for any basis. This is the case if and only if $\operatorname{det} B>0$.

