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Lecture 33:

Multiple integrals.

Line integrals.



Riemann sums in two dimensions

Consider a closed coordinate rectangle
R = [a, b]× [c, d ] ⊂ R

2.

Definition. A Riemann sum of a function f : R → R with
respect to a partition P = {D1,D2, . . . ,Dn} of R generated
by samples tj ∈ Dj is a sum

S(f ,P, tj) =
∑n

j=1

f (tj) area(Dj).

The norm of the partition P is ‖P‖ = max1≤j≤n diam(Dj).

Definition. The Riemann sums S(f ,P, tj) converge to a limit
I (f ) as the norm ‖P‖ → 0 if for every ε > 0 there exists
δ > 0 such that ‖P‖ < δ implies |S(f ,P, tj)− I (f )| < ε for
any partition P and choice of samples tj .

If this is the case, then the function f is called integrable on
R and the limit I (f ) is called the integral of f over R .



Double integral

Closed coordinate rectangle R = [a, b]× [c , d ]

= {(x , y) ∈ R
2 | a ≤ x ≤ b, c ≤ y ≤ d}.

Notation:

∫∫

R

f dA or

∫∫

R

f (x , y) dx dy .

Theorem 1 If f is continuous on the closed
rectangle R, then f is integrable.

Theorem 2 A function f : R → R is Riemann

integrable on the rectangle R if and only if f is
bounded on R and continuous almost everywhere on
R (that is, the set of discontinuities of f has zero

area).



Fubini’s Theorem

Fubini’s Theorem allows us to reduce a multiple
integral to a repeated one-dimensional integral.

Theorem If a function f is integrable on

R = [a, b]× [c , d ], then
∫∫

R

f dA =

∫ b

a

(

∫ d

c

f (x , y) dy
)

dx

=

∫ d

c

(

∫ b

a

f (x , y) dx
)

dy .

In particular, this implies that we can change the

order of integration in a repeated integral.



Integrals over general domains

Suppose f : D → R is a function defined on a
(Jordan) measurable set D ⊂ R

2. Since D is

bounded, it is contained in a rectangle R. To
define the integral of f over D, we extend the

function f to a function on R:

f ext(x , y) =

{

f (x , y) if (x , y) ∈ D,
0 if (x , y) /∈ D.

Definition.

∫∫

D

f dA is defined to be

∫∫

R

f ext dA.

In particular, area(D) =

∫∫

D

1 dA.



Integration as a linear operation

Theorem 1 If functions f , g are integrable on a

set D ⊂ R
2, then the sum f + g is also integrable

on D and
∫∫

D

(f + g) dA =

∫∫

D

f dA+

∫∫

D

g dA.

Theorem 2 If a function f is integrable on a set
D ⊂ R

2, then for each α ∈ R the scalar multiple
αf is also integrable on D and

∫∫

D

αf dA = α

∫∫

D

f dA.



Comparison theorems for integrals

Theorem 1 If functions f , g are integrable on a

set D ⊂ R
2, and f (x , y) ≤ g(x , y) for all

(x , y) ∈ D, then
∫∫

D

f dA ≤

∫∫

D

g dA.

Theorem 2 If f is integrable on a set D ⊂ R
2,

then the function |f | is also integrable on D and
∣

∣

∣

∣

∫∫

D

f dA

∣

∣

∣

∣

≤

∫∫

D

|f | dA.



More properties of integrals

Theorem If a function f : D → R is integrable on

the set D ⊂ R
2 and f (D) ⊂ [a, b], then for each

continuous function g : [a, b] → R the composition

g ◦ f is also integrable on D.

Theorem If a function f is integrable on sets
D1,D2 ⊂ R

2, then it is integrable on their union
D1 ∪ D2. Moreover, if the sets D1 and D2 are

disjoint up to a set of zero area, then
∫∫

D1∪D2

f dA =

∫∫

D1

f dA+

∫∫

D2

f dA.



Change of variables in a double integral

Theorem Let D ⊂ R
2 be a measurable domain

and f be an integrable function on D. If

T = (u, v) is a smooth coordinate mapping such
that T−1 is defined on D, Then
∫∫

D

f (u, v) du dv

=

∫∫

T−1(D)

f
(

u(x , y), v(x , y)
)

∣

∣

∣

∣

det
∂(u, v)

∂(x , y)

∣

∣

∣

∣

dx dy .

In particular, the integral in the right-hand side is

well-defined.



Triple integral

To integrate in R
3, volumes are used instead of areas in R

2.
Instead of coordinate rectangles, basic sets are coordinate
boxes (or bricks) B = [a1, b1]× [a2, b2]× [a3, b3] ⊂ R

3.
Then we can define an integral of a function f over a
measurable set D ⊂ R

3.

Notation:

∫∫∫

D

f dV or

∫∫∫

D

f (x , y , z) dx dy dz .

The properties of triple integrals are completely analogous to
those of double integrals. In particular, Fubini’s Theorem is
formulated as follows.

Theorem If a function f is integrable on a brick
B = [a1, b1]× [a2, b2]× [a3, b3] ⊂ R

3, then
∫∫∫

B

f dV =

∫ b1

a1

(
∫ b2

a2

(

∫ b3

a3

f (x , y , z) dz
)

dy

)

dx .



Path

Definition. A path in R
n is a continuous function

x : [a, b] → R
n.

Paths provide parametrizations for curves.

Length of the path x is defined as
L = supP

∑k
j=1 ‖x(tj)− x(tj−1)‖ over all partitions

P = {t0, t1, . . . , tk} of the interval [a, b].

Theorem The length of a smooth path

x : [a, b] → R
n is

∫ b

a

‖x′(t)‖ dt.

Arclength parameter: s(t) =

∫ t

a

‖x′(τ)‖ dτ .



Scalar line integral

Scalar line integral is an integral of a scalar function f over a
path x : [a, b] → R

n of finite length relative to the arclength.
It is defined as a limit of Riemann sums

S(f ,P, τj) =
∑k

j=1

f (x(τj))
(

s(tj)− s(tj−1)
)

,

where P = {t0, t1, . . . , tk} is a partition of [a, b],
τj ∈ [tj , tj−1] for 1 ≤ j ≤ k, and s is the arclength parameter
of the path x.

Theorem Let x : [a, b] → R
n be a smooth path and f be a

function defined on the image of this path. Then
∫

x

f ds =

∫ b

a

f (x(t)) ‖x′(t)‖ dt.

ds is referred to as the arclength element.



Vector line integral

Vector line integral is an integral of a vector field

over a smooth path. It is a scalar.

Definition. Let x : [a, b] → R
n be a smooth path

and F be a vector field defined on the image of this

path. Then

∫

x

F · ds =

∫ b

a

F(x(t)) · x′(t) dt.

Alternatively, the integral of F over x can be

represented as the integral of a differential form
∫

x

F1 dx1 + F2 dx2 + · · ·+ Fn dxn,

where F = (F1, F2, . . . , Fn) and dxi = x ′i (t) dt.



Line integrals and reparametrization

Given a path x : [a, b] → R
n, we say that another path

y : [c, d ] → R
n is a reparametrization of x if there exists a

continuous invertible function u : [c, d ] → [a, b] such that
y(t) = x(u(t)) for all t ∈ [c, d ].

The reparametrization may be orientation-preserving (when u

is increasing) or orientation-reversing (when u is decreasing).

Theorem 1 Any scalar line integral is invariant under
reparametrizations.

Theorem 2 Any vector line integral is invariant under
orientation-preserving reparametrizations and changes its sign
under orientation-reversing reparametrizations.

As a consequence, we can define the integral of a function
over a simple curve and the integral of a vector field over a
simple oriented curve.


