MATH 311 Topics in Applied Mathematics I Lecture 34: Green's theorem. Conservative vector fields.

Scalar line integral

Scalar line integral is an integral of a scalar function f over a path $\mathbf{x} : [a, b] \to \mathbb{R}^n$ of finite length relative to the arclength. It is defined as a limit of Riemann sums

$$\mathcal{S}(f, \mathcal{P}, au_j) = \sum_{j=1}^k f(\mathbf{x}(au_j)) \left(s(t_j) - s(t_{j-1})
ight),$$

where $P = \{t_0, t_1, \dots, t_k\}$ is a partition of [a, b], $\tau_j \in [t_j, t_{j-1}]$ for $1 \le j \le k$, and *s* is the arclength parameter of the path **x**.

Theorem Let $\mathbf{x} : [a, b] \to \mathbb{R}^n$ be a smooth path and f be a function defined on the image of this path. Then

$$\int_{\mathbf{x}} f \, d\mathbf{s} = \int_{a}^{b} f(\mathbf{x}(t)) \| \mathbf{x}'(t) \| \, dt.$$

ds is referred to as the arclength element.

Vector line integral

Vector line integral is an integral of a vector field over a smooth path. It is a scalar.

Definition. Let $\mathbf{x} : [a, b] \to \mathbb{R}^n$ be a smooth path and \mathbf{F} be a vector field defined on the image of this path. Then $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt$.

Alternatively, the integral of **F** over **x** can be represented as the integral of a **differential form** $\int_{\mathbf{x}} F_1 \, dx_1 + F_2 \, dx_2 + \dots + F_n \, dx_n,$ where $\mathbf{F} = (F_1, F_2, \dots, F_n)$ and $dx_i = x'_i(t) \, dt$.

Line integrals and reparametrization

Given a path $\mathbf{x} : [a, b] \to \mathbb{R}^n$, we say that another path $\mathbf{y} : [c, d] \to \mathbb{R}^n$ is a **reparametrization** of \mathbf{x} if there exists a continuous invertible function $u : [c, d] \to [a, b]$ such that $\mathbf{y}(t) = \mathbf{x}(u(t))$ for all $t \in [c, d]$.

The reparametrization may be orientation-preserving (when u is increasing) or orientation-reversing (when u is decreasing).

Theorem 1 Any scalar line integral is invariant under reparametrizations.

Theorem 2 Any vector line integral is invariant under orientation-preserving reparametrizations and changes its sign under orientation-reversing reparametrizations.

As a consequence, we can define the integral of a function over a simple curve and the integral of a vector field over a simple oriented curve.

Applications of line integrals

• Mass of a wire

If f is the density on a wire C, then $\int_C f \, ds$ is the mass of C.

• Work of a force

If **F** is a force field, then $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$ is the work done by **F** on a particle that moves along the path **x**.

• Circulation of fluid

If **F** is the velocity field of a planar fluid, then the circulation of the fluid across a closed curve *C* is $\oint_C \mathbf{F} \cdot d\mathbf{s}$.

• Flux of fluid

If **F** is the velocity field of a planar fluid, then the flux of the fluid across a closed curve *C* is $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$, where **n** is the outward unit normal vector to *C*.

Green's Theorem

Theorem Let $D \subset \mathbb{R}^2$ be a closed, bounded region with piecewise smooth boundary ∂D oriented so that D is on the left as one traverses ∂D . Then for any smooth vector field $\mathbf{F} = (M, N)$ on D,

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy$$

or, equivalently,

$$\oint_{\partial D} M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy.$$

Green's Theorem

Proof in the case
$$D = [0,1] \times [0,1]$$
 and $\mathbf{F} = (0,N)$:
$$\int_0^1 \frac{\partial N}{\partial x}(\xi, y) d\xi = N(1,y) - N(0,y)$$

for any $y \in [0, 1]$ due to the Fundamental Theorem of Calculus. Integrating this equality by y over [0, 1], we obtain

$$\iint_D \frac{\partial N}{\partial x} \, dx \, dy = \int_0^1 N(1, y) \, dy - \int_0^1 N(0, y) \, dy.$$

Let $P_1 = (0,0)$, $P_2 = (1,0)$, $P_3 = (1,1)$, and $P_4 = (0,1)$. The first integral in the right-hand side equals the vector integral of the field **F** over the segment P_2P_3 . The second integral equals the integral of **F** over the segment P_1P_4 . Also, the integral of **F** over any horizontal segment is 0. It follows that the entire right-hand side equals the integral of **F** over the broken line $P_1P_2P_3P_4P_1$, that is, over ∂D .

Example

Consider vector fields $\mathbf{F}(x, y) = (-y, 0)$, $\mathbf{G}(x, y) = (0, x)$, and $\mathbf{H}(x, y) = (y, x)$.

According to Green's Theorem,

$$\oint_{\partial D} -y \, dx = \iint_D 1 \, dx \, dy = \operatorname{area}(D),$$
$$\oint_{\partial D} x \, dy = \iint_D 1 \, dx \, dy = \operatorname{area}(D),$$
$$\oint_{\partial D} y \, dx + x \, dy = \iint_D 0 \, dx \, dy = 0.$$

Divergence Theorem

Theorem Let $D \subset \mathbb{R}^2$ be a closed, bounded region with piecewise smooth boundary ∂D oriented so that D is on the left as one traverses ∂D . Then for any smooth vector field \mathbf{F} on D, on D, $\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{D} \nabla \cdot \mathbf{F} \, dA.$

Proof: Let \mathcal{L} denote the rotation of the plane \mathbb{R}^2 by 90° about the origin (counterclockwise). \mathcal{L} is a linear transformation preserving the dot product. Therefore

$$\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \oint_{\partial D} \mathcal{L}(\mathbf{F}) \cdot \mathcal{L}(\mathbf{n}) \, ds.$$

Note that $\mathcal{L}(\mathbf{n})$ is the unit tangent vector to ∂D . It follows that the right-hand side is the vector integral of $\mathcal{L}(\mathbf{F})$ over ∂D . If $\mathbf{F} = (M, N)$ then $\mathcal{L}(\mathbf{F}) = (-N, M)$. By Green's Theorem, $\oint_{\partial D} \mathcal{L}(\mathbf{F}) \cdot d\mathbf{s} = \oint_{\partial D} -N \, dx + M \, dy = \iint_D \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right) \, dx \, dy.$

Conservative vector fields

Let R be an open region in \mathbb{R}^n such that any two points in R can be connected by a continuous path. Such regions are called **(arcwise) connected**.

Definition. A continuous vector field $\mathbf{F} : R \to \mathbb{R}^n$ is called **conservative** if $\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$ for any two simple, piecewise smooth, oriented curves $C_1, C_2 \subset R$ with the same initial and

terminal points.

An equivalent condition is that $\oint_C \mathbf{F} \cdot d\mathbf{s} = 0$ for any piecewise smooth closed curve $C \subset R$.

Conservative vector fields

Theorem The vector field \mathbf{F} is conservative if and only if it is a gradient field, that is, $\mathbf{F} = \nabla f$ for some function $f : R \to \mathbb{R}$. If this is the case, then $\int_C \mathbf{F} \cdot d\mathbf{s} = f(B) - f(A)$

for any piecewise smooth, oriented curve $C \subset R$ that connects the point A to the point B.

Remark. In the case \mathbf{F} is a force field, conservativity means that energy is conserved. Moreover, in this case the function f is the potential energy.

Test of conservativity

Theorem If a smooth field $\mathbf{F} = (F_1, F_2, \dots, F_n)$ is conservative in a region $R \subset \mathbb{R}^n$, then the Jacobian matrix $\frac{\partial(F_1, F_2, \dots, F_n)}{\partial(x_1, x_2, \dots, x_n)}$ is symmetric everywhere in R, that is, $\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}$ for $i \neq j$.

Indeed, if the field **F** is conservative, then $\mathbf{F} = \nabla f$ for some smooth function $f : R \to \mathbb{R}$. It follows that the Jacobian matrix of **F** is the **Hessian matrix** of *f*, that is, the matrix of

second-order partial derivatives: $\frac{\partial F_i}{\partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$.

Remark. The converse of the theorem holds provided that the region R is **simply-connected**, which means that any closed path in R can be continuously shrunk within R to a point.

Finding scalar potential

Example.
$$\mathbf{F}(x, y) = (2xy^3 + 3y\cos 3x, 3x^2y^2 + \sin 3x).$$

The vector field **F** is conservative if
$$\partial F_1/\partial y = \partial F_2/\partial x$$
.
 $\frac{\partial F_1}{\partial y} = 6xy^2 + 3\cos 3x$, $\frac{\partial F_2}{\partial x} = 6xy^2 + 3\cos 3x$.

Thus
$$\mathbf{F} = \nabla f$$
 for some function f (scalar potential of \mathbf{F}),
that is, $\frac{\partial f}{\partial x} = 2xy^3 + 3y \cos 3x$, $\frac{\partial f}{\partial y} = 3x^2y^2 + \sin 3x$.

Integrating the second equality by y, we get

$$f(x,y) = \int (3x^2y^2 + \sin 3x) \, dy = x^2y^3 + y \sin 3x + g(x).$$

Substituting this into the first equality, we obtain that $2xy^3 + 3y \cos 3x + g'(x) = 2xy^3 + 3y \cos 3x$. Hence g'(x) = 0 so that g(x) = c, a constant. Then $f(x, y) = x^2y^3 + y \sin 3x + c$.