MATH 311

Topics in Applied Mathematics I

Lecture 39: Integration of differential forms.

Review for the final exam (continued).

Vector line and surface integrals

Any vector integral along a curve $\gamma \subset \mathbb{R}^n$ can be represented as a scalar line integral:

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{\gamma} (\mathbf{F} \cdot \mathbf{t}) ds$$
,

where ${\bf t}$ is a unit **tangent** vector chosen according to the orientation of the curve γ .

Any vector integral along a surface $S \subset \mathbb{R}^3$ can be represented as a scalar surface integral:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} (\mathbf{F} \cdot \mathbf{n}) \, dS,$$

where \mathbf{n} is a unit **normal** vector chosen according to the orientation of the surface S.

k-forms

Let V be a vector space. Given an integer $k \geq 0$, a k-form on V is a function $\omega: V^k \to \mathbb{R}$ such that

- \bullet ω is **multi-linear**, which means that it depends linearly on each of its k arguments; and
- \bullet ω is **anti-symmetric**, which means that its value changes the sign upon exchanging any two of the k arguments.

In particular, a 0-form is just a constant, a 1-form is merely a linear functional on V, and a 2-form is a bi-linear function $\omega: V \times V \to \mathbb{R}$ such that $\omega(\mathbf{v}, \mathbf{u}) = -\omega(\mathbf{u}, \mathbf{v})$ for all $\mathbf{v}, \mathbf{u} \in V$.

Principal example. For any vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in \mathbb{R}^n$ let $\omega(\mathbf{v}_1, \dots, \mathbf{v}_n) = \det A$, where $A = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ is an $n \times n$ matrix whose consecutive columns are vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$. Then ω is an n-form on \mathbb{R}^n (called the **volume form**).

Wedge product

Suppose $\omega_1, \omega_2, \dots, \omega_k$ are linear functionals on a vector space V. The **wedge product** of these 1-forms, denoted $\omega_1 \wedge \omega_2 \wedge \dots \wedge \omega_k$, is a k-form on V defined by

$$\omega_1 \wedge \cdots \wedge \omega_k(\mathbf{v}_1, \dots, \mathbf{v}_k) = \begin{vmatrix} \omega_1(\mathbf{v}_1) & \omega_1(\mathbf{v}_2) & \cdots & \omega_1(\mathbf{v}_k) \\ \omega_2(\mathbf{v}_1) & \omega_2(\mathbf{v}_2) & \cdots & \omega_2(\mathbf{v}_k) \\ \vdots & \vdots & \ddots & \vdots \\ \omega_k(\mathbf{v}_1) & \omega_k(\mathbf{v}_2) & \cdots & \omega_k(\mathbf{v}_k) \end{vmatrix}.$$

Note that dependence of the wedge product $\omega_1 \wedge \omega_2 \wedge \cdots \wedge \omega_k$ on its factors is also multi-linear and anti-symmetric.

Now suppose $V=\mathbb{R}^n$. Let ξ_i denote a linear functional on \mathbb{R}^n that evaluates the i-th coordinate for each vector. Then the volume form from the previous slide is $\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_n$. The set of all k-forms on \mathbb{R}^n , denoted $\Lambda^k(\mathbb{R}^n)^*$, is a vector space. It has a basis comprised of wedge products $\xi_{i_1} \wedge \xi_{i_2} \wedge \cdots \wedge \xi_{i_k}$, where $1 \leq i_1 < i_2 < \cdots < i_k \leq n$.

Differential k-forms

Let $U \subset \mathbb{R}^n$ be an open region. A **differential** k-form on U is a field of k-forms from $\Lambda^k(\mathbb{R}^n)^*$. Formally, its a mapping $\omega: U \to \Lambda^k(\mathbb{R}^n)^*$.

Example. Consider a smooth function $f:U\to\mathbb{R}$ (which is an example of a differential 0-form). To each point $p\in U$ we assign a linear functional $\mathbf{v}\mapsto D_{\mathbf{v}}f(p)$ (the derivative of f at p). This defines a differential 1-form, which is denoted df.

Let x_1, x_2, \ldots, x_n be coordinates in \mathbb{R}^n . Each x_i can be regarded a smooth function on U. Note that dx_i is a constant field: its value is ξ_i at every point. It follows that any differential k-form ω on U is uniquely represented as

$$\omega = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} \alpha_{i_1 i_2 \dots i_k} \, dx_{i_1} \wedge dx_{i_2} \wedge \dots \wedge dx_{i_k},$$

where $\alpha_{i_1 i_2 \dots i_k}$ are some functions on U and the wedge product is pointwise. The form ω is **smooth** if each $\alpha_{i_1 i_2 \dots i_k}$ is smooth.

Integration of differential forms

Any continuous differential k-form ω in a region $U \subset \mathbb{R}^n$ can be integrated over a smooth oriented k-dimensional manifold in U.

Definition. Let $R \subset \mathbb{R}^k$ be a connected, bounded region. A continuous one-to-one map $\mathbf{X}: R \to \mathbb{R}^n$ is called a **parametrized** k-dimensional manifold. The parametrized manifold is **smooth** if \mathbf{X} is smooth and, moreover, the Jacobian matrix of \mathbf{X} has rank k at every point of R.

If
$$\omega = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} \alpha_{i_1 i_2 \dots i_k} dx_{i_1} \wedge dx_{i_2} \wedge \dots \wedge dx_{i_k},$$

then

$$\int_{\mathbf{X}} \omega = \sum \int_{R} \alpha_{i_1 i_2 \dots i_k} (\mathbf{X}(s_1, \dots, s_k)) \, \det \frac{\partial (X_{i_1}, \dots, X_{i_k})}{\partial (s_1, \dots, s_k)} \, dV.$$

Examples in \mathbb{R}^3 . • Vector line integral

The integral of a vector field $\mathbf{F} = (F_1, F_2, F_3)$ along a curve γ can be interpreted as the integral of a differential 1-form:

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{\gamma} F_1 \, dx + F_2 \, dy + F_3 \, dz.$$

• Vector surface integral

The integral of a vector field $\mathbf{F} = (F_1, F_2, F_3)$ along a surface S can be interpreted as the integral of a differential 2-form:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} F_{1} \, dy \wedge dz + F_{2} \, dz \wedge dx + F_{3} \, dx \wedge dy.$$

• Multiple integral

The integral of a function f over a region $U \subset \mathbb{R}^3$ can be interpreted as the integral of a differential 3-form:

$$\iiint_U f \, dV = \iiint_U f \, dx \wedge dy \wedge dz.$$

Exterior derivative

Let $U \subset \mathbb{R}^n$ be an open region. The vector space of differential k-forms on U is denoted $\Omega^k(U)$.

Theorem There exists a unique family of transformations $\delta_k: \Omega^k(U) \to \Omega^{k+1}(U), \ k = 0, 1, 2, \ldots$, such that

- each δ_k is linear,
- for any smooth function f on U, $\delta_0(f) = df$,
- for any smooth functions f, g_1, \ldots, g_k on U, $\delta_k(f dg_1 \wedge \cdots \wedge dg_k) = df \wedge dg_1 \wedge \cdots \wedge dg_k$.

The differential form $\delta_k(\omega)$ is called the **exterior derivative** of ω and denoted $d\omega$.

Generalized Stokes' Theorem For any smooth differential k-form ω on U and any bounded, oriented smooth (k+1)-dimensional manifold $C \subset U$,

$$\int_{\mathcal{C}} d\omega = \oint_{\partial \mathcal{C}} \omega.$$

Examples

• Differential 1-form in \mathbb{R}^2 .

We have
$$\omega = M \, dx + N \, dy$$
. Then
$$d\omega = d(M \, dx) + d(N \, dy) = dM \wedge dx + dN \wedge dy$$
$$= \left(\frac{\partial M}{\partial x} dx + \frac{\partial M}{\partial y} dy\right) \wedge dx + \left(\frac{\partial N}{\partial x} dx + \frac{\partial N}{\partial y} dy\right) \wedge dy$$

$$= \frac{\partial M}{\partial x} dx \wedge dx + \frac{\partial M}{\partial y} dy \wedge dx + \frac{\partial N}{\partial x} dx \wedge dy + \frac{\partial N}{\partial y} dy \wedge dy$$

$$= \tfrac{\partial M}{\partial y} dy \wedge dx + \tfrac{\partial N}{\partial x} dx \wedge dy = \left(\tfrac{\partial N}{\partial x} - \tfrac{\partial M}{\partial y} \right) dx \wedge dy.$$

Hence in this case Generalized Stokes' Theorem yields Green's Theorem:

$$\oint_{\partial D} M \, dx + N \, dy = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy.$$

Examples

• Differential 1-form in \mathbb{R}^3 .

We have $\omega = F_1 dx + F_2 dy + F_3 dz$. Then

$$d\omega = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) dy \wedge dz + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) dz \wedge dx + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dx \wedge dy.$$

In this case Generalized Stokes' Theorem yields usual Stokes' Theorem.

• Differential 2-form in \mathbb{R}^3 .

We have
$$\omega = F_1 dy \wedge dz + F_2 dz \wedge dx + F_3 dx \wedge dy$$
. Then
$$d\omega = \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}\right) dx \wedge dy \wedge dz.$$

In this case Generalized Stokes' Theorem yields Gauss' Theorem.

Area, volume, and determinants

• 2×2 determinants and plane geometry

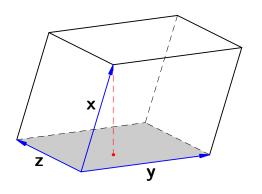
Let P be a parallelogram in the plane \mathbb{R}^2 . Suppose that vectors $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$ are represented by adjacent sides of P. Then $\operatorname{area}(P) = |\det A|$, where $A = (\mathbf{v}_1, \mathbf{v}_2)$, a matrix whose columns are \mathbf{v}_1 and \mathbf{v}_2 .

Consider a linear operator $L_A : \mathbb{R}^2 \to \mathbb{R}^2$ given by $L_A(\mathbf{v}) = A\mathbf{v}$ for any column vector \mathbf{v} . Then $\operatorname{area}(L_A(D)) = |\det A| \operatorname{area}(D)$ for any bounded domain D.

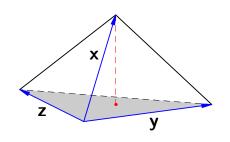
• 3×3 determinants and space geometry

Let Π be a parallelepiped in space \mathbb{R}^3 . Suppose that vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^3$ are represented by adjacent edges of Π . Then $\operatorname{volume}(\Pi) = |\det B|$, where $B = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, a matrix whose columns are \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .

Similarly, volume($L_B(D)$) = $|\det B|$ volume(D) for any bounded domain $D \subset \mathbb{R}^3$.



Parallelepiped is a prism. (Volume) = (area of the base) \times (height) Area of the base = $|\mathbf{y} \times \mathbf{z}|$ Volume = $|\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})|$



Tetrahedron is a pyramid.

(Volume) =
$$\frac{1}{3}$$
 (area of the base) \times (height)

Area of the base $=\frac{1}{2}|\mathbf{y}\times\mathbf{z}|$

$$\implies$$
 Volume $=\frac{1}{6} |\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})|$