Sample problems for Test 2

Any problem may be altered or replaced by a different one!

Problem 1 Let $A=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(i) Find the rank and the nullity of the matrix A.
(ii) Find a basis for the row space of A, then extend this basis to a basis for \mathbb{R}^{4}.
(iii) Find a basis for the nullspace of A.

Problem 2 Let V be a subspace of $\mathcal{F}(\mathbb{R})$ spanned by functions e^{x} and e^{-x}. Let L be a linear operator on V such that

$$
\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)
$$

is the matrix of L relative to the basis e^{x}, e^{-x}. Find the matrix of L relative to the basis $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right), \sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$.

Problem 3 Let $L: V \rightarrow W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that

$$
\operatorname{dim} \operatorname{Range}(L)+\operatorname{dim} \operatorname{ker}(L)=\operatorname{dim} V .
$$

Problem 4 Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix A.
(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Is the matrix A diagonalizable? Explain.
(iv) Find all eigenvalues of the matrix A^{2}.

Problem 5 Find a linear polynomial which is the best least squares fit to the following data:

$$
\begin{array}{c||l|l|l|l|l}
x & -2 & -1 & 0 & 1 & 2 \\
\hline f(x) & -3 & -2 & 1 & 2 & 5
\end{array}
$$

Problem 6 Let V be a subspace of \mathbb{R}^{4} spanned by the vectors $\mathbf{x}_{1}=(1,1,1,1)$ and $\mathbf{x}_{2}=(1,0,3,0)$.
(i) Find an orthonormal basis for V.
(ii) Find an orthonormal basis for the orthogonal complement V^{\perp}.

