MATH 311 Topics in Applied Mathematics I

Lecture 18:

Change of basis (continued).

Linear transformations.

Basis and coordinates

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$\mathbf{v} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_n \mathbf{v}_n,$$

where $x_i \in \mathbb{R}$. The coefficients x_1, x_2, \ldots, x_n are called the **coordinates** of **v** with respect to the ordered basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

The mapping

vector
$$\mathbf{v} \mapsto its coordinates (x_1, x_2, \dots, x_n)$$

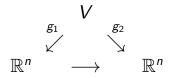
is a one-to-one correspondence between V and \mathbb{R}^n . This correspondence respects linear operations in V and in \mathbb{R}^n .

Change of coordinates

Let V be a vector space of dimension n.

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for V and $g_1 : V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be another basis for V and $g_2 : V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.



The composition $g_2 \circ g_1^{-1}$ is a transformation of \mathbb{R}^n . It has the form $\mathbf{x} \mapsto U\mathbf{x}$, where U is an $n \times n$ matrix.

U is called the **transition matrix** from $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ to $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$. Columns of U are coordinates of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ with respect to the basis $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.

Problem. Find the transition matrix from the basis $p_1(x) = 1$, $p_2(x) = x + 1$, $p_3(x) = (x + 1)^2$ to the basis $q_1(x) = 1$, $q_2(x) = x$, $q_3(x) = x^2$ for the vector space \mathcal{P}_3 .

We have to find coordinates of the polynomials p_1, p_2, p_3 with respect to the basis q_1, q_2, q_3 : $p_1(x) = 1 = q_1(x),$ $p_2(x) = x + 1 = q_1(x) + q_2(x),$ $p_3(x) = (x+1)^2 = x^2 + 2x + 1 = q_1(x) + 2q_2(x) + q_3(x).$

Hence the transition matrix is
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
.

Thus the polynomial identity

a₁ +
$$a_2(x + 1) + a_2(x + 1)$$

is equivalent to the relation

$$a_1 + a_2(x+1) + a_3(x+1)$$

 $a_1 + a_2(x+1) + a_3(x+1)^2 = b_1 + b_2x + b_3x^2$

$$a_3(x+1)^2$$

$$(+1)^2$$

$$(1)^2$$

 $\begin{pmatrix} b_1 \\ b_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}.$

Problem. Find the transition matrix from the basis $\mathbf{v}_1 = (1,2,3)$, $\mathbf{v}_2 = (1,0,1)$, $\mathbf{v}_3 = (1,2,1)$ to the basis $\mathbf{u}_1 = (1,1,0)$, $\mathbf{u}_2 = (0,1,1)$, $\mathbf{u}_3 = (1,1,1)$.

It is convenient to make a two-step transition: first from $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$, and then from $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ to $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

Let U_1 be the transition matrix from $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ and U_2 be the transition matrix from $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ to $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$:

$$U_1 = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix}, \qquad U_2 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \implies$ coordinates \mathbf{x} Basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \implies$ coordinates $U_1\mathbf{x}$

Basis $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \Longrightarrow \text{coordinates } U_2^{-1}(U_1\mathbf{x}) = (U_2^{-1}U_1)\mathbf{x}$

Thus the transition matrix from $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ is $U_2^{-1}U_1$.

$$U_2^{-1}U_1 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix}$$

 $= \begin{pmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{pmatrix}.$

Linear mapping = linear transformation = linear function

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \to V_2$ is **linear** if $\boxed{ L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}),}$ $\boxed{ L(r\mathbf{x}) = rL(\mathbf{x}) }$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{R}$.

A linear mapping $\ell: V \to \mathbb{R}$ is called a **linear** functional on V.

If $V_1 = V_2$ (or if both V_1 and V_2 are functional spaces) then a linear mapping $L: V_1 \to V_2$ is called a **linear operator**.

Linear mapping = linear transformation = linear function

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \to V_2$ is **linear** if $\boxed{L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}),}$ $\boxed{L(r\mathbf{x}) = rL(\mathbf{x})}$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{R}$.

Remark. A function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = ax + b is a linear transformation of the vector space \mathbb{R} if and only if b = 0.

Basic properties of linear transformations

Let $L: V_1 \to V_2$ be a linear mapping.

- $L(r_1\mathbf{v}_1 + \cdots + r_k\mathbf{v}_k) = r_1L(\mathbf{v}_1) + \cdots + r_kL(\mathbf{v}_k)$ for all k > 1, $\mathbf{v}_1, \dots, \mathbf{v}_k \in V_1$, and $r_1, \dots, r_k \in \mathbb{R}$.
- $L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2) = L(r_1\mathbf{v}_1) + L(r_2\mathbf{v}_2) = r_1L(\mathbf{v}_1) + r_2L(\mathbf{v}_2),$ $L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + r_3\mathbf{v}_3) = L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2) + L(r_3\mathbf{v}_3) =$
 - = $r_1L(\mathbf{v}_1) + r_2L(\mathbf{v}_2) + r_3L(\mathbf{v}_3)$, and so on. • $L(\mathbf{0}_1) = \mathbf{0}_2$, where $\mathbf{0}_1$ and $\mathbf{0}_2$ are zero vectors in
 - V_1 and V_2 , respectively. $L(\mathbf{0}_1) = L(0\mathbf{0}_1) = 0L(\mathbf{0}_1) = \mathbf{0}_2$.
 - $L(-\mathbf{v}) = -L(\mathbf{v})$ for any $\mathbf{v} \in V_1$.

$$L(-\mathbf{v}) = L((-1)\mathbf{v}) = (-1)L(\mathbf{v}) = -L(\mathbf{v}).$$

Examples of linear mappings

- Scaling $L: V \to V$, $L(\mathbf{v}) = s\mathbf{v}$, where $s \in \mathbb{R}$. $L(\mathbf{x} + \mathbf{y}) = s(\mathbf{x} + \mathbf{y}) = s\mathbf{x} + s\mathbf{y} = L(\mathbf{x}) + L(\mathbf{y})$, $L(r\mathbf{x}) = s(r\mathbf{x}) = r(s\mathbf{x}) = rL(\mathbf{x})$.
 - Dot product with a fixed vector $\ell : \mathbb{R}^n \to \mathbb{R}, \ \ell(\mathbf{v}) = \mathbf{v} \cdot \mathbf{v}_0, \ \text{where } \mathbf{v}_0 \in \mathbb{R}^n.$

$$\ell(\mathbf{x} + \mathbf{y}) = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{v}_0 = \mathbf{x} \cdot \mathbf{v}_0 + \mathbf{y} \cdot \mathbf{v}_0 = \ell(\mathbf{x}) + \ell(\mathbf{y}),$$

$$\ell(r\mathbf{x}) = (r\mathbf{x}) \cdot \mathbf{v}_0 = r(\mathbf{x} \cdot \mathbf{v}_0) = r\ell(\mathbf{x}).$$

- Cross product with a fixed vector $L: \mathbb{R}^3 \to \mathbb{R}^3$, $L(\mathbf{v}) = \mathbf{v} \times \mathbf{v}_0$, where $\mathbf{v}_0 \in \mathbb{R}^3$.
- Multiplication by a fixed matrix $L: \mathbb{R}^n \to \mathbb{R}^m$, $L(\mathbf{v}) = A\mathbf{v}$, where A is an $m \times n$ matrix and all vectors are column vectors.

Linear mappings of functional vector spaces

- Evaluation at a fixed point
- $\ell: F(\mathbb{R}) \to \mathbb{R}, \ \ell(f) = f(a), \text{ where } a \in \mathbb{R}.$
 - Multiplication by a fixed function
- $L:F(\mathbb{R}) o F(\mathbb{R}),\ L(f)=gf,\ ext{where}\ g\in F(\mathbb{R}).$
- Differentiation $D: C^1(\mathbb{R}) \to C(\mathbb{R})$, L(f) = f'. D(f+g) = (f+g)' = f' + g' = D(f) + D(g), D(rf) = (rf)' = rf' = rD(f).
 - Integration over a finite interval
- $\ell: C(\mathbb{R}) \to \mathbb{R}, \ \ell(f) = \int_a^b f(x) \, dx$, where $a, b \in \mathbb{R}, \ a < b$.

More properties of linear mappings

- If a linear mapping $L:V\to W$ is invertible then the inverse mapping $L^{-1}:W\to V$ is also linear.
- If $L: V \to W$ and $M: W \to X$ are linear mappings then the composition $M \circ L: V \to X$ is also linear.
- If $L_1: V \to W$ and $L_2: V \to W$ are linear mappings then the sum $L_1 + L_2$ is also linear.

Linear differential operators

• an ordinary differential operator

$$L: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \quad L=g_0\frac{d^2}{dx^2}+g_1\frac{d}{dx}+g_2,$$

where g_0, g_1, g_2 are smooth functions on \mathbb{R} .

That is, $L(f) = g_0 f'' + g_1 f' + g_2 f$.

• Laplace's operator $\Delta: C^\infty(\mathbb{R}^2) \to C^\infty(\mathbb{R}^2)$,

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

(a.k.a. the Laplacian; also denoted by ∇^2).

Linear integral operators

anti-derivative

$$L: C[a,b] \to C^{1}[a,b], \ (Lf)(x) = \int_{-\infty}^{\infty} f(y) \, dy.$$

Hilbert-Schmidt operator

$$L: C[a,b] \rightarrow C[c,d], \ (Lf)(x) = \int_a^b K(x,y)f(y) \, dy,$$
 where $K \in C([c,d] \times [a,b]).$

Laplace transform

$$\mathcal{L}:BC(0,\infty)\to C(0,\infty),\ (\mathcal{L}f)(x)=\int_0^\infty e^{-xy}f(y)\,dy.$$