MATH 311

Topics in Applied Mathematics I

Lecture 30:
 Review of differential calculus.

Limit of a sequence

Definition. Sequence $x_{1}, x_{2}, x_{3}, \ldots$ of real numbers is said to converge to a real number a if for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\varepsilon$ for all $n \geq N$. The number a is called the limit of $\left\{x_{n}\right\}$.
Notation: $\lim _{n \rightarrow \infty} x_{n}=a$, or $x_{n} \rightarrow a$ as $n \rightarrow \infty$.
Note that $d(x, y)=|x-y|$ is the distance between points x and y on the real line.

The condition $\left|x_{n}-a\right|<\varepsilon$ is equivalent to $x_{n} \in(a-\varepsilon, a+\varepsilon)$. The interval $(a-\varepsilon, a+\varepsilon)$ is called the ε-neighborhood of the point a. The convergence $x_{n} \rightarrow a$ means that any ε-neighborhood of a contains all but finitely many elements of the sequence $\left\{x_{n}\right\}$.

Limit of a function

Suppose $f: E \rightarrow \mathbb{R}$ is a function defined on a set $E \subset \mathbb{R}$.
Definition. We say that the function f converges to a limit $L \in \mathbb{R}$ at a point a if for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that

$$
0<|x-a|<\delta \text { implies }|f(x)-L|<\varepsilon .
$$

Notation: $L=\lim _{x \rightarrow a} f(x)$ or $f(x) \rightarrow L$ as $x \rightarrow a$.
Theorem Let / be an open interval containing a point $a \in \mathbb{R}$ and f be a function defined on $I \backslash\{a\}$. Then $f(x) \rightarrow L$ as $x \rightarrow a$ if and only if for any sequence $\left\{x_{n}\right\}$ of elements of $I \backslash\{a\}$,

$$
\lim _{n \rightarrow \infty} x_{n}=a \text { implies } \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L .
$$

Continuity

Definition. Given a set $E \subset \mathbb{R}$, a function $f: E \rightarrow \mathbb{R}$, and a point $c \in E$, the function f is continuous at c if

$$
f(c)=\lim _{x \rightarrow c} f(x) .
$$

That is, if for any $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that $|x-c|<\delta$ and $x \in E$ imply $|f(x)-f(c)|<\varepsilon$.

Theorem A function $f: E \rightarrow \mathbb{R}$ is continuous at a point $c \in E$ if and only if for any sequence $\left\{x_{n}\right\}$ of elements of E, $x_{n} \rightarrow c$ as $n \rightarrow \infty$ implies $f\left(x_{n}\right) \rightarrow f(c)$ as $n \rightarrow \infty$.

We say that the function f is continuous on a set $E_{0} \subset E$ if f is continuous at every point $c \in E_{0}$. The function f is continuous if it is continuous on the entire domain E.

Topology of the real line

Definition. A sequence $\left\{x_{n}\right\}$ of real numbers is called a Cauchy sequence if for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<\varepsilon$ whenever $n, m \geq N$.
Theorem (Cauchy) Any Cauchy sequence is convergent.
This property of \mathbb{R} is called completeness.
Theorem (Bolzano-Weierstrass) Every bounded sequence of real numbers has a convergent subsequence.
This property of \mathbb{R} is called local compactness.
A set $S \subset \mathbb{R}$ is called compact if any sequence of its elements has a subsequence converging to a limit in S. For example, any closed bounded interval $[a, b]$ is compact.
Extreme Value Theorem If $S \subset \mathbb{R}$ is compact, then any continuous function $f: S \rightarrow \mathbb{R}$ attains its extreme values on S.

The derivative

Definition. A real function f is said to be differentiable at a point $a \in \mathbb{R}$ if it is defined on an open interval containing a and the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists. The limit is denoted $f^{\prime}(a)$ and called the derivative of f at a. An equivalent condition is

$$
f(a+h)=f(a)+f^{\prime}(a) h+r(h), \text { where } \lim _{h \rightarrow 0} r(h) / h=0
$$

If a function f is differentiable at a point a, then it is continuous at a.

Suppose that a function f is defined and differentiable on an interval l. Then the derivative of f can be regarded as a function on I. Notation: $f^{\prime}, \dot{f}, \frac{d f}{d x}, D_{x} f, f^{(1)}$.

Differentiability theorems

Sum Rule If functions f and g are differentiable at a point $a \in \mathbb{R}$, then the sum $f+g$ is also differentiable at a. Moreover, $(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$.

Homogeneous Rule If a function f is differentiable at a point $a \in \mathbb{R}$, then for any $r \in \mathbb{R}$ the scalar multiple $r f$ is also differentiable at a. Moreover, $(r f)^{\prime}(a)=r f^{\prime}(a)$.

Difference Rule If functions f and g are differentiable at a point $a \in \mathbb{R}$, then the difference $f-g$ is also differentiable at a. Moreover, $(f-g)^{\prime}(a)=f^{\prime}(a)-g^{\prime}(a)$.

Differentiability theorems

Product Rule If functions f and g are differentiable at a point $a \in \mathbb{R}$, then the product $f g$ is also differentiable at a. Moreover, $(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$.

Reciprocal Rule If a function f is differentiable at a point $a \in \mathbb{R}$ and $f(a) \neq 0$, then the function $1 / f$ is also differentiable at a. Moreover, $(1 / f)^{\prime}(a)=-f^{\prime}(a) / f^{2}(a)$.

Quotient Rule If functions f and g are differentiable at $a \in \mathbb{R}$ and $g(a) \neq 0$, then the quotient f / g is also differentiable at a. Moreover,

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g^{2}(a)} .
$$

Differentiability theorems

Chain Rule If a function f is differentiable at a point $a \in \mathbb{R}$ and a function g is differentiable at $f(a)$, then the composition $g \circ f$ is differentiable at a. Moreover, $(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) \cdot f^{\prime}(a)$.

Derivative of the inverse function Suppose f is an invertible continuous function. If f is differentiable at a point a and $f^{\prime}(a) \neq 0$, then the inverse function is differentiable at the point $b=f(a)$ and, moreover,

$$
\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)} .
$$

In the case $f^{\prime}(a)=0$, the inverse function f^{-1} is not differentiable at $f(a)$.

Properties of differentiable functions

Fermat's Theorem If a function f is differentiable at a point c of local extremum (maximum or minimum), then $f^{\prime}(c)=0$.

Rolle's Theorem If a function f is continuous on a closed interval $[a, b]$, differentiable on the open interval (a, b), and if $f(a)=f(b)$, then $f^{\prime}(c)=0$ for some $c \in(a, b)$.

Mean Value Theorem If a function f is
continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.

Vector-valued functions

Definition. Let $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots$ be a sequence of vectors in \mathbb{R}^{n}, $\mathbf{v}^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right)$. We say that the sequence converges to a vector $\mathbf{u}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ if $x_{i}^{(k)} \rightarrow y_{i}$ as $k \rightarrow \infty$, i.e., if each coordinate converges.

A vector-valued function $\mathbf{v}: X \rightarrow \mathbb{R}^{n}$ defined on a set $X \subset \mathbb{R}$ is essentially a collection of real-valued functions $f_{i}: X \rightarrow \mathbb{R}$, $1 \leq i \leq n$, such that $\mathbf{v}(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{n}(t)\right)$ for all $t \in X$.

We say that $\lim _{t \rightarrow a} \mathbf{v}(t)=\mathbf{u}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ if $\lim _{t \rightarrow a} f_{i}(t)=y_{i}$ for $1 \leq i \leq n$. Then the function \mathbf{v} is continuous at a point $a \in X$ if each f_{i} is continuous at a.
Finally, we say that the function \mathbf{v} is differentiable at a point a if each f_{i} is differentiable at a. The derivative is, by definition, $\mathbf{v}^{\prime}(a)=\left(f_{1}^{\prime}(a), f_{2}^{\prime}(a), \ldots, f_{n}^{\prime}(a)\right)$.

Differentiability theorems

Sum Rule If functions $\mathbf{v}: X \rightarrow \mathbb{R}^{n}$ and $\mathbf{w}: X \rightarrow \mathbb{R}^{n}$ are differentiable at a point $a \in \mathbb{R}$, then the sum $\mathbf{v}+\mathbf{w}$ is also differentiable at a. Moreover, $(\mathbf{v}+\mathbf{w})^{\prime}(a)=\mathbf{v}^{\prime}(a)+\mathbf{w}^{\prime}(a)$.

Homogeneous Rule If a function $\mathbf{v}: X \rightarrow \mathbb{R}^{n}$ is differentiable at a point $a \in \mathbb{R}$, then for any $r \in \mathbb{R}$ the scalar multiple $r \mathbf{v}$ is also differentiable at a. Moreover, $(r \mathbf{v})^{\prime}(a)=r \mathbf{v}^{\prime}(a)$.

Difference Rule If functions $\mathbf{v}: X \rightarrow \mathbb{R}^{n}$ and $\mathbf{w}: X \rightarrow \mathbb{R}^{n}$ are differentiable at a point $a \in \mathbb{R}$, then the difference $\mathbf{v}-\mathbf{w}$ is also differentiable at a. Moreover,
$(\mathbf{v}-\mathbf{w})^{\prime}(a)=\mathbf{v}^{\prime}(a)-\mathbf{w}^{\prime}(a)$.

Differentiability theorems

Product Rule \#1 If functions $f: X \rightarrow \mathbb{R}$ and $\mathbf{v}: X \rightarrow \mathbb{R}^{n}$ are differentiable at a point $a \in \mathbb{R}$, then the scalar multiple $f \mathbf{v}$ is also differentiable at a. Moreover, $(f \mathbf{v})^{\prime}(a)=f^{\prime}(a) \mathbf{v}(a)+f(a) \mathbf{v}^{\prime}(a)$.

Product Rule \#2 If functions $\mathbf{v}: X \rightarrow \mathbb{R}^{n}$ and $\mathbf{w}: X \rightarrow \mathbb{R}^{n}$ are differentiable at a point $a \in \mathbb{R}$, then the dot product $\mathbf{v} \cdot \mathbf{w}$ is also differentiable at a. Moreover, $(\mathbf{v} \cdot \mathbf{w})^{\prime}(a)=\mathbf{v}^{\prime}(a) \cdot \mathbf{w}(a)+\mathbf{v}(a) \cdot \mathbf{w}^{\prime}(a)$.

Chain Rule If a function $f: X \rightarrow \mathbb{R}$ is differentiable at a point $a \in \mathbb{R}$ and a function $\mathbf{v}: Y \rightarrow \mathbb{R}^{n}$ is differentiable at $f(a)$, then the composition $\mathbf{v} \circ f$ is differentiable at a. Moreover, $(\mathbf{v} \circ f)^{\prime}(a)=f^{\prime}(a) \mathbf{v}^{\prime}(f(a))$.

Matrix-valued functions

Definition. Let $A^{(1)}, A^{(2)}, \ldots$ be a sequence of $m \times n$ matrices, $A^{(k)}=\left(a_{i j}^{(k)}\right)$. We say that the sequence converges to an $m \times n$ matrix $B=\left(b_{i j}\right)$ if $a_{i j}^{(k)} \rightarrow b_{i j}$ as $k \rightarrow \infty$, i.e., if each entry converges.
A matrix-valued function $A: X \rightarrow \mathcal{M}_{m, n}(\mathbb{R})$ defined on a set $X \subset \mathbb{R}$ is essentially a collection of $m n$ real-valued functions $f_{i j}: X \rightarrow \mathbb{R}$ such that $A(t)=\left(f_{i j}(t)\right)$ for all $t \in X$.

Limits, continuity, differentiability, and derivatives for such functions are defined in the same way as for vector-valued functions.

Some differentiability theorems

Sum Rule If functions $A: X \rightarrow \mathcal{M}_{m, n}(\mathbb{R})$ and
$B: X \rightarrow \mathcal{M}_{m, n}(\mathbb{R})$ are differentiable at a point $a \in \mathbb{R}$, then the sum $A+B$ is also differentiable at a. Moreover, $(A+B)^{\prime}(a)=A^{\prime}(a)+B^{\prime}(a)$.

Product Rule If functions $A: X \rightarrow \mathcal{M}_{m, n}(\mathbb{R})$ and $B: X \rightarrow \mathcal{M}_{n, k}(\mathbb{R})$ are differentiable at a point $a \in \mathbb{R}$, then the matrix product $A B$ is also differentiable at a. Moreover, $(A B)^{\prime}(a)=A^{\prime}(a) B(a)+A(a) B^{\prime}(a)$.

Chain Rule If a function $f: X \rightarrow \mathbb{R}$ is differentiable at a point $a \in \mathbb{R}$ and a function $A: X \rightarrow \mathcal{M}_{m, n}(\mathbb{R})$ is differentiable at $f(a)$, then the composition $A \circ f$ is differentiable at a. Moreover, $(A \circ f)^{\prime}(a)=f^{\prime}(a) A^{\prime}(f(a))$.

