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Gradient, divergence, and curl.
Review of integral calculus.
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Gradient, divergence, and curl

Gradient of a scalar field f = f (x1, x2 . . . , xn) is
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Divergence of a vector field F = (F1, F2, . . . , Fn) is
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Curl of a vector field F = (F1, F2, F3) is
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Del notation

Gradient, divergence, and curl can be denoted in a compact
way using the del (a.k.a. nabla a.k.a. atled) “operator”

∇ =
( ∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

)

.

Namely, grad f = ∇f , divF = ∇ · F, curlF = ∇× F.

Theorem 1 div(curlF) = 0 wherever the vector field F is
twice continuously differentiable.

Theorem 2 curl(grad f ) = 0 wherever the scalar field f is
twice continuously differentiable.

In the del notation, ∇ · (∇× F) = 0 and ∇× (∇f ) = 0.



Riemann sums and Riemann integral

Definition. A Riemann sum of a function f : [a, b] → R

with respect to a partition P = {x0, x1, . . . , xn} of [a, b]
generated by samples tj ∈ [xj−1, xj ] is a sum

S(f ,P, tj) =
∑n

j=1
f (tj) (xj − xj−1).

Remark. P = {x0, x1, . . . , xn} is a partition of [a, b] if
a = x0 < x1 < · · · < xn−1 < xn = b. The norm of the
partition P is ‖P‖ = max1≤j≤n |xj − xj−1|.

Definition. The Riemann sums S(f ,P, tj) converge to a limit
I (f ) as the norm ‖P‖ → 0 if for every ε > 0 there exists
δ > 0 such that ‖P‖ < δ implies |S(f ,P, tj)− I (f )| < ε for
any partition P and choice of samples tj .

If this is the case, then the function f is called integrable on
[a, b] and the limit I (f ) is called the integral of f over [a, b],

denoted
∫ b

a
f (x) dx .



Riemann sums and Darboux sums



Integration as a linear operation

Theorem 1 If functions f , g are integrable on an

interval [a, b], then the sum f + g is also
integrable on [a, b] and
∫

b

a

(

f (x) + g(x)
)

dx =

∫

b

a

f (x) dx +

∫

b

a

g(x) dx .

Theorem 2 If a function f is integrable on [a, b],

then for each α ∈ R the scalar multiple αf is also
integrable on [a, b] and

∫

b

a

αf (x) dx = α

∫

b

a

f (x) dx .



More properties of integrals

Theorem If a function f is integrable on [a, b] and
f ([a, b]) ⊂ [A,B], then for each continuous function
g : [A,B] → R the composition g ◦ f is also integrable on
[a, b].

Theorem If functions f and g are integrable on [a, b], then
so is fg .

Theorem If a function f is integrable on [a, b], then it is
integrable on each subinterval [c, d ] ⊂ [a, b]. Moreover, for
any c ∈ (a, b) we have

∫ b

a

f (x) dx =

∫ c

a

f (x) dx +

∫ b

c

f (x) dx .



Comparison theorems for integrals

Theorem 1 If functions f , g are integrable on
[a, b] and f (x) ≤ g(x) for all x ∈ [a, b], then

∫

b

a

f (x) dx ≤

∫

b

a

g(x) dx .

Theorem 2 If f is integrable on [a, b] and

f (x) ≥ 0 for x ∈ [a, b], then

∫

b

a

f (x) dx ≥ 0.

Theorem 3 If f is integrable on [a, b], then the

function |f | is also integrable on [a, b] and
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Fundamental theorem of calculus

Theorem If a function f is continuous on an

interval [a, b], then the function

F (x) =

∫

x

a

f (t) dt, x ∈ [a, b],

is continuously differentiable on [a, b]. Moreover,

F ′(x) = f (x) for all x ∈ [a, b].

Theorem If a function F is differentiable on [a, b]
and the derivative F ′ is integrable on [a, b], then

∫

b

a

F ′(x) dx = F (b)− F (a).



Change of the variable in an integral

Theorem If φ is continuously differentiable on a closed,
nondegenerate interval [a, b] and f is continuous on
φ([a, b]), then
∫ φ(b)

φ(a)

f (t) dt =

∫ b

a

f (φ(x))φ′(x) dx =

∫ b

a

f (φ(x)) dφ(x).

Remarks. • It is possible that φ(a) ≥ φ(b). To make sense
of the integral in this case, we set

∫ d

c

f (t) dt = −

∫ c

d

f (t) dt

if c > d . Also, we set the integral to be 0 if c = d .

• t = φ(x) is a proper change of the variable only if the
function φ is strictly monotone. However the theorem holds
even without this assumption.



Sets of measure zero

Definition. A subset E of the real line R is said to have
measure zero if for any ε > 0 the set E can be covered by a
sequence of open intervals J1, J2, . . . such that
∑∞

n=1 |Jn| < ε.

Examples. • Any set E that can be represented as a sequence
x1, x2, . . . (such sets are called countable) has measure zero.

Indeed, for any ε > 0, let

Jn =
(

xn −
ε

2n+1
, xn +

ε

2n+1

)

, n = 1, 2, . . .

Then E ⊂ J1 ∪ J2 ∪ . . . and |Jn| = ε/2n for all n ∈ N so
that

∑∞

n=1 |Jn| = ε.

• The set Q of rational numbers has measure zero (since it is
countable).

• Nondegenerate interval [a, b] is not a set of measure zero.



Lebesgue’s criterion for Riemann integrability

Definition. Suppose P(x) is a property depending
on x ∈ S , where S ⊂ R. We say that P(x) holds

for almost all x ∈ S (or almost everywhere on
S) if the set {x ∈ S | P(x) does not hold } has

measure zero.

Theorem A function f : [a, b] → R is Riemann
integrable on the interval [a, b] if and only if f is
bounded on [a, b] and continuous almost

everywhere on [a, b].



Area

Suppose P is a nonempty collection of subsets of R2 such that
(i) if X ,Y ∈ P, then X ∪ Y , X ∩ Y , X \ Y ∈ P;
(ii) if X ∈ P, then X + v ∈ P for all v ∈ R2.

Definition. A function µ : P → R is called an area function
if it satisfies the following conditions:
• (positivity) µ(X ) ≥ 0 for all X ∈ P;
• (additivity) µ(X ∪ Y ) = µ(X ) + µ(Y ) if X ∩ Y = ∅;
• (translation invariance) µ(X + v) = µ(X ) for all X ∈ P
and v ∈ R2;
• µ(Q) = 1, where Q = [0, 1]× [0, 1] is the unit square.

Any area function satisfies an extra condition:
• (monotonicity) µ(X ) ≤ µ(Y ) whenever X ⊂ Y .

Theorem Let P0 be the smallest collection of subsets of R2

that satisfies (i) and contains all polygons. Then there exists
a unique area function µ : P0 → R.


